
Automatic Generation of Smart, Security-Aware
GUI Models

David Basin1, Manuel Clavel2,3, Marina Egea1, and Michael Schläpfer1

1 ETH Zürich, Switzerland
{basin,marinae,michschl}@inf.ethz.ch

2 IMDEA Software Institute, Madrid, Spain
manuel.clavel@imdea.org

3 Universidad Complutense de Madrid, Spain

Abstract. In many software applications, users access application data
using graphical user interfaces (GUIs). There is an important, but little
explored, link between visualization and security: when the application
data is protected by an access control policy, the GUI should be aware
of this and respect the policy. For example, the GUI should not display
options to users for actions that they are not authorized to execute on
application data. Taking this idea one step further, the application GUI
should not just be security-aware, it should also be smart. For example,
the GUI should not display options to users for opening other widgets
when these widgets will only display options for actions that the users
are not authorized to execute on application data. We establish this link
between visualization and security using a model-driven development
approach. Namely, we define and implement a many-models-to-model
transformation that, given a security-design model and a GUI model,
makes the GUI model both security-aware and smart.

1 Introduction

In many programs, users access application data using GUI widgets: data is
created, deleted, read, and updated using text boxes, check boxes, buttons, and
the like. There is an important, but little explored, link between visualization
and security: When the application data is protected by an access control policy,
the application GUI should be aware of and respect this policy. For example, the
GUI should not display options to users for actions that they are not authorized
to execute on application data. This prevents user frustration, for example, from
filling out a long electronic form only to have the server reject it because the user
lacks a permission to execute some associated action on the application data.
Taking this idea one step further, the GUI should not, for example, display
options to users to open other widgets when these widgets only display options
for actions that the users are not authorized to execute on application data.
That is, the application GUI should not just be security-aware but also smart.

Visualization and security

To see how this link between GUIs and security policies might look, consider
the following example: an application for managing employee information. This
information will include, among other data, employees’ names, phone numbers,
and salaries. Suppose now that the employee information is protected by an
access control policy that includes, among other clauses, the following:

– All users can read employees’ names.
– Only administrators and supervisors can read and update employees’ phone

numbers.
– Only supervisors can read employees’ salaries.

Suppose now that, as shown in Figure 1, our application GUI includes the fol-
lowing windows:

Window #1. This is our main window. Here, users can edit employee data by
clicking on the Edit Phone Number-button.

Window #2. Users can select an employee from a list of names, shown in a
combo box, and view the information associated to the selected employee by
clicking on the View-button.

Window #3. Users can read in the Name, Phone, and Salary-labels, respec-
tively, the name, phone number, and salary of the selected employee. More-
over, users can edit the phone number by clicking on the Edit-button.

Window #4. Users can update the phone number of the selected employee by
typing the new number into the Phone-entry and clicking on the OK-button.

Edit Phone Number

when click on,
open window #2

#1 John Smith

Mary Ramirez

Hugo Silva

Emma Primbs

ViewBack

#2

when click on, open
window #3,
with person selected

when created,
show list of
person's names

Name:
Phone:
Salary:

John Smith

629208417

45,000.00

EditBack

#3

when click on, open
window #4,
with this person

when created, show,
respectively, this
person's name,
phone number, and
salary

Phone: 629208417

OK

#4

when click on, update
this person's phone
number,
with data entried

Fig. 1. A simple GUI for editing employees’ phone numbers

What behaviour should our GUI have if it is to be considered “security-
aware”? Suppose that a user with the role administrator wants to edit an em-
ployee’s phone number using our GUI. Since administrators are not authorized

to read employees’ salaries, when opening Window #3, our GUI should prevent
an administrator from reading this information in the Salary-label. Furthermore,
how should our GUI behave if it is also to be considered “smart”? Suppose now
that a user with no special privileges wants to edit an employee’s phone number
using our GUI. Since ordinary users are not authorized to read or update em-
ployees’ phone numbers, our GUI should prevent the user from opening Window
#4 by clicking on the Edit-button, since the user should not be able to do anything
within this window (i.e., neither read the phone number of the selected employee
in the Phone-label nor click on the OK-button to update this information).

The problem we address here is how to establish this link between visualiza-
tion and security. The default, “ad-hoc” solution, namely, directly hardcoding
the security policy within the GUI, is clearly inadequate. First, the GUI designer
is often not aware of the application data security policy. Second, even if the de-
signer is aware of it, hardcoding the application data security policy within the
GUI code is cumbersome and error-prone, if done manually. Finally, any changes
in the security policy will require manual changes to the GUI code where this
policy is hardcoded, which again is a cumbersome and error-prone task.

Our approach: model-transformation

We propose in this paper a model-driven approach that links visualization and
security. The key idea is that this link is ultimately defined in terms of data ac-
tions, since data actions are both controlled by the security policy and triggered
by the events supported by the graphical user interface. The key component of
our proposal is a many-models-to-model transformation which, given a security-
design model (specifying the access control policy on the application data) and
a GUI model (specifying the actions triggered by the events supported by the
application’s graphical interface), automatically generates a GUI model that is
both security-aware and smart. Thus, under our proposal, illustrated in Figure 2,
the process of modeling a smart, security-aware GUI has the following parts.

1. Software engineers specify the application-data model C.
2. Security engineers specify the security-design model SC .
3. GUI designers specify the application GUI model GC .
4. A many-models-to-model transformation automatically generates a smart,

security-aware GUI model M(GC,SC) from the security model SC and the
GUI model GC .

To show the applicability of our proposal, we have implemented an Eclipse-
based application that automatically generates smart, security-aware GUI mod-
els from security-design models and GUI models [7]. Moreover, it automati-
cally generates smart, security-aware web applications from the generated smart,
security-aware GUI models. Specifically, our Eclipse-application includes the fol-
lowing parts.

– A GMF editor for drawing application-data models.

Fig. 2. Modeling a smart and security-aware GUI.

– A plugin for generating user-friendly GMF editors for drawing security-
design models and GUI models.

– A plugin for generating smart, security-aware GUI models from security-
design models and GUI models.

– A plugin for generating web applications from smart, security-aware GUI
models.

Due to space limitations, we only report on our plugin for generating smart,
security-aware GUI models. This plugin implements our many-models-to-model
transformation as a QVT operational transformation.

Applicability and extensions

The applicability of our approach crucially depends on the expressiveness of the
modeling languages used to specify the access control policies and the graphical
user interfaces. In this paper, however, we focus on the two main ideas behind
our approach.

1. The link between visualization and security is essentially given by the data
actions, since they are both controlled by the security policy and triggered
by the events supported by the graphical user interface.

2. This link can be systematically established using an appropriate many-
models-to-model transformation to generate smart, security-aware GUI mod-
els from the models specifying the security policy and the models specifying
the graphical user interfaces.

To explain these ideas, we present our approach using abstract notions of both
security-design models and (smart, security-aware) graphical user interface mod-
els. For the sake of illustration, we will also use concrete modeling languages,
which provide the source and target models of a many-models-to-model transfor-
mation that we will introduce to exemplify our approach; however, our approach
is not restricted to or dependant on the use of these languages or our particu-
lar many-models-to-model transformation. In fact, our Eclipse-based application
for generating smart, security-aware GUIs [7] currently supports a modeling lan-
guage for specifying graphical user interfaces that is significantly more expressive

than the one introduced in this paper. For example, it allows one to associate
data to widgets, to pass information from one widget to another widget, to jump
from one widget to another widget, and to call actions on data with parameters.
Notice that some of these features are, for example, needed to fully modeled the
graphical user interface described in Figure 1.

Organization. In Sections 2 and 3 we introduce security-design models and GUI
models. Afterwards, in Sections 4 and 5, we introduce smart, security-aware GUI
models and we define a many-models-to-model transformation that automati-
cally generates smart, security-aware GUI models from security-design models
and GUI models. We conclude with a discussion of related and future work.
Throughout the paper we will use the employee information system example,
given above, as our running example.

2 Security-design models

Model-driven security (MDS) [2] is a specialization of model-driven development
for developing secure systems. In this approach, designers specify system models
along with their security requirements and use tools to automatically gener-
ate system architectures from the models, including complete, configured access
control infrastructures. MDS is centered around the construction (and analysis)
of security-design models, which are models that combine security requirements
with system designs.

In this section, we define security-design models as they will be considered
throughout this paper. Our focus is on access control security requirements. We
first provide an abstract definition (Definition 2) of security-design models, inde-
pendent of any modeling language that may be used for specifying them. Then,
we introduce a specific language (SecureUML+ComponentUML) for modeling
security-design models.

We begin by defining system design models (Definition 1) and by introduc-
ing a specific modeling language for them (ComponentUML). For the sake of
simplicity, we will consider that system designs are component-based, and we
will use the following (rather simple) notion of a component-based design model
throughout this paper

Definition 1. A component-based design model C is a 4-tuple

C = 〈E,At, As, Md〉

that specifies the entities E which play a role in the system as well as their
properties, given by their attributes At, associations-ends As, and their methods
Md.

Example 1. The component-based design model specifying the data model un-
derlying our running example will consist of a single entity (Person), with three
attributes (name, phone number, and salary).

The ComponentUML language. ComponentUML is a simple language for mod-
eling component-based systems. Essentially, it provides a subset of UML class
models: entities can be related by associations and may have attributes and
methods. Its metamodel is shown in Figure 3 (inner rectangle).

Each valid instance of the ComponentUML metamodel specifies a component-
based design model 〈E, At , As, Md〉 whose components are defined by the fol-
lowing OCL expressions:

E = Entity.allInstances().
At = Attribute.allInstances().
As = AssociationEnd.allInstances().
Md = Method.allInstances().

We are now ready to define security-design models.

Definition 2. Let C be a component-based model C = 〈E, At , As, Md〉. Then, a
security-design model SC for C is a 5-tuple

SC = 〈Rs, DaAc, Rl , RsDaAc, DaAu〉,

with Rs = (E ∪ At ∪ As ∪ Md), RsDaAc : Rs −→ P(DaAc), and DaAu :
DaAc −→ P(Rl). The model SC specifies a security policy for accessing the re-
sources (namely, the entities and their properties) in the component-based system
modeled by C. More concretely, SC specifies

– the actions DaAc whose access policy is modeled;
– the specific actions RsDaAc(rs) supported by a given resource rs ∈ Rs;
– the roles Rl that users may adopt when interacting with the system; and
– the roles DaAu(daac) ⊆ Rl that are authorized to execute a given action

daac ∈ DaAc.

Example 2. The security-design model specifying the security policy of our run-
ning example will define, for example, that:

– the roles that users may adopt when using the system are all (for users with
no special privileges), administrator, and supervisor ;

– the actions supported by the resources include, for example, to read and
update the phone number resource; and

– the role supervisor, for example, is authorized to execute a read action on
(any) salary resource, but not the other two roles.

The SecureUML language. This is a modeling language based on RBAC [5]
for formalizing access control policies on protected resources [2]. The policies
that can be specified in SecureUML are of two kinds: those that depend on
static information, namely the assignments of users and permissions to roles
and those that depend on dynamic information. SecureUML leaves open what
the protected resources are and which actions they offer to clients. These are

specified in a so-called dialect and depend on the primitives for constructing
models in the associated system-design modeling language. Each SecureUML
dialect basically declares its own protected resources and the actions that they
offer to clients.4

The SecureUML+ComponentUML language. This is a SecureUML dialect that
connects SecureUML with ComponentUML, providing a convenient language for
specifying security-design models. Its metamodel is shown in Figure 3.

Fig. 3. SecureUML+ComponentUML metamodel.

The protected resources are the entities, as well as their attributes, methods,
and association-ends. The atomic actions that are offered to clients are create,
delete, update, read, and execute the entity’s properties or methods. The dialect
also provides composite actions, which are used to group primitive actions into
a hierarchy of higher-level ones. The composite actions that are offered to clients
are read, update, and full access either on entities or entity’s properties: e.g., full
access on an attribute includes both read and update access on this attribute.

Each valid instance5 of the SecureUML+ComponentUML metamodel spec-
ifies a security-design model SC = 〈Rs, DaAc, Rl , RsDaAc, DaAu〉, whose com-
ponents are defined by the following OCL expressions:

Rs = Resource.allInstances().
DaAc = AtomicAction.allInstances().
Rl = Role.allInstances().
RsDaAc(rs) = rs .actions−>select(a|a.oclIsTypeOf(AtomicAction)).
DaAu(daac) = daac.allAssignedRoles().

4 SecureUML also supports authorization constraints, which are assertions that re-
strict authorizations and are translated to run-time constraints. For the sake of
simplicity, we do not consider such constraints here.

5 We refer to [1] for the complete list of OCL invariants associated with the Se-
cureUML+ComponentUML metamodel.

where the operation allAssignedRoles() is defined as follows:6

context AtomicAction::allAssignedRoles():Set(Roles)
body: self.compactionPlus().isassigned.allRoles()−>asSet()

Example 3. Suppose that EmployeeSalaryAtomicRead denotes the action of read-
ing (any) salary resource and that Supervisor denotes the role supervisor. Then,
for any instance of the SecureUML+ComponentUML metamodel that correctly
models the access control policy in our running example, DaAu(EmployeeSalary-
AtomicRead) should return Set{Supervisor}. This is because only supervisors can
read employees’ salaries.

3 GUI models

In GUI design, it is useful to distinguish between a GUI’s visual elements and
the behavioural properties associated with these elements. Visual elements are
typically called widgets, which are of different types and support different events.
Examples of widgets include buttons, entries, containers, and windows. Buttons
can be clicked on. Entries can be filled in with text. Containers can graphically
contain (group together) other widgets. Windows are a concrete class of con-
tainers. The behavioural properties of the different widgets are defined by the
actions associated to the events that they support. We distinguish between data
actions and widget actions. Data actions act on application data. Widget actions
act upon widgets (including themselves).

In this section, we define GUI models as they will be considered throughout
this paper. We first provide an abstract definition and afterwards we introduce
a specific language for modeling GUIs.

Definition 3. Let C be a component-based model C = 〈E,At, As, Md〉. Then, a
GUI model GC for C is a 9-tuple7

GC = 〈Wd , Wdc, In, Ev , DaAc, WdAc, WdEv , EvWdAc, EvDaAc〉,

with Wdc ⊆ Wd, In : Wdc −→ P(Wd), WdEv : Wd −→ P(Ev), EvWdAc :
Ev −→ P(WdAc), and EvDaAc : Ev −→ P(DaAc). The model GC specifies a
6 The auxiliary operations compactionPlus() and allRoles() return, respectively, the

collection of composite actions to which an action is (directly or indirectly) subordi-
nated and the collection of roles that are (directly or indirectly) assigned to a given
permission. We again refer to [1] for the full definitions of these operations.

7 For the sake of simplicity, we have left implicit the intended dependency of GC with
respect to C: namely, that the data actions DaAc are indeed actions upon the entities
(and their properties) that are modeled in C. To make this dependency explicit,
similarly to what we did for the case of security-design models, we would extend our
9-tuple in Definition 3 with two additional components: namely Rs and RsDaAc,
with Rs = (E ∪At ∪As ∪Md) and RsDaAc : Rs −→ P(DaAc).

graphical interface to interact with the component-based system modeled by C.
More concretely, GC specifies

– the widgets Wd and widget containers Wdc that make up the GUI;
– the widgets In(wd) that are contained by a given widget container wd;
– the events Ev supported by the GUI;
– the data actions DaAc and the widget actions WdAc that can be triggered by

the events;
– the events WdEv(wd) ⊆ Ev supported by a given widget wd ∈Wd; and,
– the widget actions EvWdAc(ev) ⊆ WdAc and data actions EvDaAc(ev) ⊆

DaAc associated with a given event ev ∈ Ev.

Example 4. The GUI model (partially) specifying the graphical user interface in
our running example will, for example, define that: the widgets are four windows,
which contain six buttons, one combo-box, three labels and one entry; the but-
tons support, among others, on click events; and the on click event supported by
the View-button triggers the widget action of opening the Window #3, while the
on click event supported by the OK-button triggers the data action of updating
a given phone number resource.

The GUI language. This is a simple language for modeling GUIs. The GUI
metamodel is shown in Figure 4 (inner rectangle).8

Application GUIs consist of widgets that are displayed inside containers,
which are themselves widgets. Each widget has a (possibly empty) set of events
associated to it, and each event is in turn associated with a set of actions, which
are the actions triggered by the event. Also, the events’ actions are of two types:
widget actions (which are actions on GUI widgets) and model actions (also
denoted data actions), which are actions on the application data.

Each valid instance of the GUI metamodel specifies a GUI model GC =
〈Wd , Wdc, In, Ev , DaAc, WdAc, WdEv , EvWdAc, EvDaAc〉, whose components
are defined by the following OCL expressions:

Wd = Widget.allInstances().
Wdc = Container.allInstances().
In(wd) = wd .contained.
Ev = Event.allInstances().
DaAc = DataAction.allInstances().
WdAc = WidgetAction.allInstances().
WdEv(wd) = wd .widgetEvents.
EvWdAc(ev) = ev .firedActions−>select(a|a.oclIsTypeOf(WidgetAction)).
EvDaAc(ev) = ev .firedActions−>select(a|a.oclIsTypeOf(ModelAction))

8 For the sake of simplicity, our metamodel only defines a basic subsets of widgets
(windows, entries, and buttons), of events (entering or leaving a widget, creating a
widget, and clicking or double-clicking on a widget), and of widget actions (opening
and closing a widget). These subsets are, however, sufficient for the purpose of this
paper. The interested reader can find in [7] the definition of a more comprehensive
GUI metamodel.

.oclAsType(ModelAction).modelAction).

Example 5. Suppose that onCreateSalaryLabelWindow3 denotes the event that cre-
ates a Salary-label in Window #3. Then, for any instance of the GUI meta-
model that correctly models the graphical user interface in our running exam-
ple, EvDaAc(onCreateSalaryLabelWindow3) should return Set{EmployeeSalaryAtomic-
Read}. This is because reading a salary resource is the data action triggered when
the Salary-label is created.

4 Security-GUI models

We are now ready to provide an abstract definition (Definition 4) of security-
GUI models. These are models in which permissions are associated to widget
events in order to specify who can execute them. We also introduce a specific
language for modeling security-GUI models (SecureUML+GUI).

Definition 4. Let C be a component-based model C = 〈E,At, As, Md〉. Let G be
a GUI model for C

GC = 〈Wd , Wdc, In, Ev , DaAc, WdAc, WdEv , EvWdAc, EvDaAc〉.

Then, a security-GUI model MGC for GC is a triple MGC = 〈G, Rl , EvAu〉, with
EvAu : Ev −→ P(Rl), that specifies a security policy for accessing the resources
(namely, the events) in the graphical interface modeled by GC. More concretely,
it specifies all the roles Rl that users may adopt when interacting with the GUI,
as well as the specific roles EvAu(ev) ⊆ Rl that are authorized to execute a given
event ev ∈ Ev.

Example 6. The security-GUI model specifying the expected (security) behaviour
of the graphical user interface in our running example will, for example, define
that the role administrator is authorized to execute the events creating the Name
and Phone-labels in Window #3, but not the event creating the Salary-label.

The SecureUML+GUI language. SecureUML+GUI is another dialect of Se-
cureUML. It combines SecureUML with our simple GUI modeling language,
providing a convenient language for specifying security-GUI models.

The SecureUML+GUI metamodel, shown in Figure 4, provides the connec-
tion between SecureUML and GUI. It specifies the protected resources, namely,
events, as well as the available actions on these protected resources, namely, their
execution.

Each valid instance of the SecureUML+GUI metamodel specifies a security-
GUI model MGC = 〈GC , Rl , EvAu〉, whose components are defined by the fol-
lowing OCL expressions:

Rl = Role.allInstances().
EvAu(ev) = ev .allAssignedRoles().

Fig. 4. SecureUML+GUI metamodel.

where the operation allAssignedRoles() is defined as follows:

context Event::allAssignedRoles():Set(Roles)
body: self.actions.isAssigned.allRoles()−>asSet()

Example 7. For any instance of the SecureUML+GUI metamodel that correctly
models the graphical user interface in our running example, EvAu(onCreateSalary-
LabelWindow3) should return Set{Supervisor}. This is because executing the event
creating the Salary-label will trigger the data action of reading a salary resource,
but only supervisors are authorized to execute this data action.

4.1 Smart security-aware GUI models

Informally, a GUI model is smart and security-aware when roles are authorized
to execute events depending on the actions (both data actions and widget ac-
tions) that these events trigger. This dependency relationship, and therefore,
the corresponding notion of smartness, can be defined in several ways and we
propose one of such definition in this section. Note that our aim is not to give the
one “canonical” definition of smartness (should such a definition even exist), but
rather to show that non-trivial kinds of smart and security-aware GUI models
can be automatically generated from GUI and security-design models using a
well-defined model transformation.

To simplify our definition of smartness, in what follows we assume that any
model GC , with

GC = 〈Wd , Wdc, In, Ev , DaAc, WdAc, WdEv , EvWdAc, EvDaAc〉,

satisfies the following properties:

1. There are only two widget actions, namely, opening and closing a widget.

2. Every widget has a distinguished event, namely, the event of creating the
widget itself. This event has the following properties:
– If a widget is a non-container widget, then the only widget action asso-

ciated to this event is the action of opening the widget itself.
– If a widget is a container widget, then the only actions associated to

this event are the actions of opening the widget itself as well as all the
widgets that it (immediately) contains.

3. There are no cycles in the widget opening actions. That is, no widget wd
can be opened by an action triggered by an event of a widget wd ′ that was
opened by an action triggered by a sequence of events starting from an event
of wd .

We denote by openwd (respectively, closewd) the action of opening (respec-
tively, closing) the widget wd . Also, we denote by EvWdAco(ev) the set of open-
ing actions triggered by the event ev, i.e., EvWdAco(ev) = {openwd | openwd ∈
EvWdAc(ev)}. Finally, we denote by onCreatewd the event of creating the widget
wd .

Definition 5. Let C be a component-based model, C = 〈E,At, As, Md〉. Let SC
be a security-design model for C,

SC = 〈Rs, DaAc, Rl , RsAc, DaAu〉,

with Rs = (E ∪At ∪As ∪Md). Also, let GC be a GUI-model for C,

GC = 〈Wd , Wdc, In, Ev , DaAc, WdAc, WdEv , EvWdAc, EvDaAc〉.

Note that DaAc is shared by SC and GC, i.e., the data actions whose access policy
is defined by SC are exactly those that can be triggered by events in GC.

Now, let MGC be a security-GUI model for GC,

MGC = 〈GC , Rl , EvAu〉.

MGC is a smart and security-aware GUI model with respect to SC if and only
if:

– The roles that are authorized by EvAu to execute an event ev (different from
creating a widget) are exactly those that:
• are also authorized by DaAu to execute all the data actions that will be

triggered when executing the event ev, and
• are also authorized by EvAu to create all the widgets that will be opened

when executing the event ev (closing a widget, however, is not relevant
authorization-wise).

– The roles that are authorized by EvAu to create a non-container widget wd
are exactly those that are also authorized by DaAu to execute all the data
actions that will be triggered when executing this event.

– The roles that are authorized by EvAu to create a container widget wd are
exactly those that are also authorized by EvAu to create at least one of the
widgets (immediately) contained by the widget wd.

More formally, for any widget wd ∈Wd and event ev ∈WdEv(wd), the follow-
ing holds:

– Case 1: ev 6= onCreatewd .
Then, EvAu(ev) =

=



⋂n
i=1 DaAu(daaci) if EvDaAc(ev) = {daac1, . . . , daacn}

and EvWdAco(ev) = ∅.⋂n
i=1 EvAu(onCreatewdi

) if EvDaAc(ev) = ∅ and
EvWdAco(ev) = {openwd1

, . . . , openwdn
}.

(
⋂n

i=1 DaAu(daaci))
⋂

(
⋂m

i=1 EvAu(onCreatewdi
)) if EvDaAc(ev) = {daac1, . . . , daacn} and

EvWdAco(ev) = {openwd1
, . . . , openwdm

}.
– Case 2: ev = onCreatewd .

Then, EvAu(ev) =

=



Rl if wd 6∈Wdc

and EvDaAc(ev) = ∅⋂n
i=1 DaAu(daaci) if wd 6∈Wdc

and EvDaAc(ev) = {daac1, . . . , daacn}.⋃n
i=1 EvAu(onCreatewdi

) if wd ∈Wdc

and In(wd) = {wd1, . . . , wdn}.

Lemma 1. Let C be a component-based model, C = 〈E,At, As,Md〉. Let SC be
a security-design model for C,

SC = 〈Rs, DaAc, Rl , RsAc, DaAu〉,

with Rs = (E ∪At ∪As ∪Md). Also, let GC be a GUI-model for C,

GC = 〈Wd , Wdc, In, Ev , DaAc, WdAc, WdEv , EvWdAc, EvDaAc〉.

Then, there exists a unique security-GUI model for GC that is smart and security-
aware with respect to SC. This model is denoted by M(GC,SC),

Proof. Due to space limitations, we only sketch the proof of this lemma here.
The crucial point is that, given a security-GUI model MGC = 〈GC , Rl , EvAu〉,
the clauses in Definition 5 precisely define, for any event supported by GC , the set
of roles in Rl that should be returned by EvAu, ifMGC is to be considered smart
and security-aware with respect to SC . First, the clauses in Definition 5 cover all
the possible cases. In fact, for every event ev , there is a clause (and only one) that
applies to this event. Then, every clause either identifies a specific set of roles as
the expected result for EvAu or it recursively calls EvAu on some creating events
(namely, those associated to the widgets that will be open when executing the
event). Since our GUI models are finite and neither include cycles in the widget
opening action nor in the containment-relationship, these recursive calls always
terminate. Consequently, for any SC and GC , there always exists a security-GUI
model for GC , namely 〈GC , Rl , EvAuSmart〉, that is smart and security-aware
with respect to SC , where EvAuSmart : Ev −→ P(Rl) is the function defined by
the clauses in Definition 5 for the given SC and GC .

5 Automatically generating smart, security-GUI models

In this section, we sketch the definition of a QVT operational transformation
smartandsecure() that, given a SecureUML+ComponentUML model and a
GUI model, automatically generates a SecureUML+GUI model that is both
smart and security-aware. The crucial step in this transformation is, of course,
the creation of the Permission-objects, and how they link Role-objects to Atomic-
Execute-objects (and, through them, to Event-objects). Recall that for the gen-
erated model to be considered smart and security-aware, for any of its Event-
objects, the value returned by the operation allAssignedRoles()−>asSet(), which
“navigates” through those links, must satisfy Definition 5.

We split smartandsecure() into two sequential auxiliary model transfor-
mations: generatemodel() and addpermissions(). The method generate-
model() generates a SecureUML+GUI model M that, basically, contains all
the widgets, events, widget actions, and data actions, along with their links,
that are specified in a given (source) GUI model GC , plus the roles Rl that
are specified in a given (source) SecureUML+ComponentUML SC . More for-
mally, generatemodel() generates a SecureUML+GUI model MGC = 〈GC , Rl ,
EmptyEvAu〉, where EmptyEvAu(ev) returns, for any event considered in GC , the
empty set of roles, i.e., the expression ev .allAssignedRoles()−>asSet() evaluates to
Set{}. The generated model MC is not yet security-aware or smart (unless the
given security-design model SC does not specify any authorization restrictions.)

Next, based on the results of evaluating an OCL operation EvAuSmart()
(whose definition directly translates into OCL the clauses in Definition 5), the
method addpermission() augments the SecureUML+GUI modelMGC with all
the permissions that makes this model smart and security-aware with respect
to SC . More concretely, it adds all the permissions, along with their links to the
appropriate roles and atomic execute actions, that are required for the following
to hold: for any event ev , the expression ev .actions.isAssigned.allRoles()−>asSet()

evaluates to the set of roles that should be authorized to execute the event ev if
MGC is to be considered smart and security-aware with respect to SC .

6 Related and Future Work

Creating user interfaces is a common task in application development and one
that is often time consuming and therefore expensive. There have been numerous
proposals and tools that aim to reduce the effort required to build effective, user-
friendly graphical interfaces. Surprisingly, there has been no prior research until
now on the systematic design of GUIs whose functionality should adhere to the
security policy of the underlying application-data model. The idea we develop
here originated in [12], where we first proposed using model-transformations to
generate simple (not necessarily smart) security-aware GUI models.

In the modeling community, other researchers have investigated how to ex-
tend existing modeling languages for GUI modeling. [4] proposes a UML profile
to model GUI layout. We do not consider layout issues since translating secu-
rity from data models into GUI models is independent (except for containment

hierarchies, which we do consider) of the graphical appearance and location of
the widgets. However, we do plan to use widgets’ graphical information to make
our GUIs more appealing to users. [3] proposes a heavyweight, template-based
extension of UML for GUI modeling to help develop GUIs for large-scale sys-
tems, although access control decisions are not part of this work either. This
work is similar to ours in that it also separates concerns within the modeling
phase by separating the construction of the application and the GUIs. Our mod-
eling techniques also differ since we use metamodeling in contrast to their use of
stereotypes. In [3], the task of the GUI designer is reduced to choosing between
window types, which are parameterized templates (including interaction behav-
ior and layout). If we had used stereotyped GUI designs in our approach, we
would have provided different fixed GUI designs that could be made automati-
cally smart and security-aware according to the underlying data model security
policy.

[6] approaches security as a crosscutting concern in terms of aspect-oriented
programming for a software system. The main contribution of this work is a
behavioral definition of aspects. The authors propose enriching a data model with
a security policy by performing a model transformation using the bidirectional
object-oriented transformation language (BOTL) [9, 10]. Although they present
examples, they only outline a method for model transformation based on the
proposed definition. Therefore a comparison here would be difficult. Notice also
that such comparison would concern our integration of the SecureUML policies in
the data model, not the GUI model generation itself. In [13], the authors present
a model transformation methodology to integrate non-functional requirements,
such as security, in a model-driven software product line. In this setting, abstract
design models of the application and its security are built and these models
are refined in parallel using model transformation to obtain an implementation
model with Java Platform, Enterprise Edition (JEE) security annotations. In
contrast, we integrate the data, the GUI, and the security platform-independent
models (PIMs) from the design stage to obtain a security-aware GUI PIM from
which one can generate a functional GUI, which will provide a security-aware
and smart access to the data. Regarding GUI generation, there are a number
of tools for the automated design and generation of user interfaces, which can
generate the static layout of an interface from the application’s data model.
However, security concerns are not among the problems addressed.

In the programming community, independent of model-driven initiatives, nu-
merous projects have addressed the problem of how to best implement graph-
ical user interfaces for application data. For example, [8] proposes enriching
the application source code with annotations that control the generation of the
graphical user interfaces. Other researchers have designed and implemented spe-
cialized tools that generate graphical user interfaces meeting their own specific
requirements. These tools simplify configuring personal services, enabling the
combination of different kinds of events [11]. Also, there are many GUI builders,
either integrated into IDEs or available as plug-ins, that simplify the task of
creating application GUIs in different programming languages. However, to the

best of our knowledge, [7] is the only tool capable (although still a prototype)
of automatically generating smart, security-aware functional GUIs.

Finally, our work is also related to research in the field of intelligent user
interfaces. In our view, smart security-aware GUIs can be seen as a class of
intelligent user interfaces. Our GUIs take advantage of the users’ status to tailor
their access to the application data. An interesting follow up question concerns
the generality of our model-transformation approach and whether it can be used
to generate other classes of intelligent interfaces.

7 Conclusions

We have presented an approach based on model-transformation for automati-
cally generating smart, security-aware GUIs. Given an application-data model
and a GUI model, our transformation makes the GUI model both smart and
security-aware. We have implemented our approach using the Operational QVT
transformation engine that is provided within Eclipse.

As a design methodology, our approach has three main advantages over tradi-
tional approaches to software design. First, security engineers and GUI designers
can independently model what they know best. Second, security engineers and
GUI designers can independently change their models, and these changes are
automatically propagated to the security-aware GUI models. Third, GUI de-
signers can use the generated security-aware GUI models to check that they are
designing the right GUI to give the (authorized) users access to the (intended)
application data.

The work presented here is the corner stone of a more ambitious project for
making model-driven security an effective and useful approach for generating
multiple layers of security-critical systems in industrial software development.

References

1. D. Basin, M. Clavel, J. Doser, and M. Egea. Automated analysis of security-design
models. Information and Software Technology, 51(5):815–831, 2009.

2. D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology, 15(1):39–91, 2006.

3. K. Blankenhorn and W. Walter. Extending UML to GUI modeling. http://www.

bitfolge.de/pubs/MC2004_Poster_Blankenhorn.pdf, 2004.
4. TATA Research Development and Design Center. Heavyweight ex-

tension of UML for GUI modeling: A template based approach.
http://www.omg.org/news/meetings/workshops/presentations/uml2001_

presentations/10-2_Venkatesh_typesasStereotypes.pdf, 2001.
5. D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.

Proposed NIST standard for Role-Based access control. ACM Transactions on
Information and System Security, 4(3):224–274, 2001.

6. J. Fox and J. Jürjens. Introducing security aspects with model transformations.
In 12th IEEE International Conference on the Engineering of Computer-Based
Systems (ECBS 2005), 4-7 April 2005, Greenbelt, MD, USA, pages 543–549, 2005.

7. BM1 Software Group. The SmartGUI Project. http://www.bm1software.com/,
2009.

8. J. Jelinek and P. Slavik. GUI generation from annotated source code. In TAMODIA
’04: Proceedings of the 3rd annual Conference on Task Models and Diagrams, pages
129–136, New York, NY, USA, 2004. ACM.

9. F. Marschall and P. Braun. Model transformations for the MDA with BOTL.
Technical report, University of Twente, 2003.

10. F. Marschall and P. Braun. Bidirectional object oriented transformation language.
http://sourceforge.net/projects/botl/, 2005.

11. M. Ogura, H. Mineno, N. Ishikaw, T. Osano, and T. Mizuno. Automatic GUI
Generation for Meta-data Based PUCC Sensor Gateway, volume 5179 of LNCS,
pages 159–166. Springer Berlin–Heidelberg, 2008.

12. M. Schläpfer, M. Egea, D. Basin, and M. Clavel. Automatic generation of security-
aware GUI models. In Alessandra Bagnato, editor, European Workshop on Security
in Model Driven Arquitecture 2009 (SEC-MDA 2009), number WP09-06 in Work-
shop Proceedings Series, pages 42–56. CTIT, Enschede, the Netherlands, 2009.

13. A. Yie, R. Casallas, D. Deridder, and R. Van Der Straeten. Multi-step concern
refinement. In EA ’08: Proceedings of the 2008 AOSD workshop on Early aspects,
pages 1–8, New York, NY, USA, 2008. ACM.

