Eliminating Timing Leaks by Unification
(Extended Abstract)

Boris Kopf and Heiko Mantel

ETH Ziirich, Switzerland
{boris.koepf ,heiko.mantel}@inf.ethz.ch

Abstract. Transforming security type systems [Aga00] go beyond check-
ing whether a given program has secure information flow. Rather than
simply rejecting a program with insecure information flow, they con-
struct a program that has secure information flow and whose behavior
is similar enough to that of the original program such that it can act
as a replacement. In this extended abstract, we sketch ongoing work on
improving transforming type systems by incorporating unification.

1 Introduction

Static analysis of information flow security on the level of concrete programming
languages has received much attention in recent years with advances in theory
and practice [SM03]. Security type systems provide a basis for reasoning in a
modular fashion, guided by the program structure, about the information flow
within a program. Each rule of such a type system performs a local analysis of the
programs top-level constructor and, if it is applicable, either determines directly
that the program is secure (for primitive commands) or reduces the analysis of
the program to the analysis of its subprograms (for composed commands). The
type check fails if no rule is applicable to the top-level constructor.

Such a purely local approach to reasoning about secure information flow has
obvious advantages in terms of simplicity and efficiency. Its precision, however,
is fairly limited as it cannot cope very well with global aspects of information
flow such as implicit flow [Den82], i.e. information flow due to the flow of control.
For instance, if the value of the guard in an if-then-else statement depends on
a secret then one must make sure that an untrusted user cannot tell from his
observations which branch has been taken because, otherwise, he would learn
information about the secret. That is, the two branches must be observationally
equivalent from the perspective of any untrusted observer, which is not a question
of a single constructor. While there obviously is a safe approximation, namely
to simply make the type check fail if a secret variable appears in the guarding
expression, this is a rather severe restriction. More sophisticated typing rules
employ global side conditions that result in slightly better approximations such
as, e.g., if the guard contains a secret variable then no assignments to variables
that can be observed by untrusted users are permitted in the branches. In a
setting with multi-threading, one must additionally ensure that the value of the

secret variable in the guard has no influence on the timing behavior. This can
be achieved by executing conditionals, including the commands in the chosen
branch, atomically [VS98] or by ensuring that both branches have identical run
time [SS00]. The current solutions are, however, still fairly simplistic and do not
add as much to the precision of the analysis as one would wish.

In this extended abstract, we propose a more balanced approach to combining
local reasoning about individual commands with global reasoning about entire
sub-programs. Technically, we employ security type systems for local reasoning
and unification for global reasoning. We illustrate this approach by extending an
existing analysis technique, namely the one from [SS00].

2 Transforming Security Type Systems

We assume a security policy with two security domains, high and low, where
information flow from high to low is forbidden. Given an imperative program,
each variable is associated with one of these two security domains with the
intuition that initial values of high variables are the secrets that shall not be
leaked and that attackers can only observe values of low variables. That is, a
program has secure information flow if the initial values of high variables do
not affect the values of low variables during program execution. This is the
usual setting for investigating information flow security on the level of concrete
imperative programming languages.

Security type systems provide a mechanism for automatically checking whether
a given program has secure information flow. Being typable means for a program
that it has secure information flow. It has become common practice that secu-
rity type systems are proved to be sound with respect to a more abstract formal
definition of secure information flow. Completeness is sacrificed for making an
efficient automation of the security analysis possible. That is, if a program is
not typable then this does not necessarily mean that the program has insecure
information flow. However, the analysis should reject as few secure programs as
possible, i.e. it should be precise.

Transforming type systems go beyond checking whether a given program has
secure information flow. Rather than simply rejecting a program that is insecure,
they modify it such that the resulting program is secure. This can be captured
by a judgment of the form C' — C’ : S (meaning the program C' is transformed
into a secure program C" with type S7).

Any transformation that is capable of making insecure programs secure nec-
essarily also changes the program’s behavior in some way. There is a natural
trade-off between the changes to the program’s behavior that one is willing to
accept and the information leaks that can be corrected by the transformation.
Here, we restrict transformations to ones that affect the timing of a given pro-
gram but no other aspects of its behavior. That is, the transformed program
shall be a slowed-down version of the original program. The information leaks
that can be eliminated under this restriction are so called timing leaks, which
can occur if a program’s run time depends on the values of secret variables. Ob-

viously, timing leaks can be exploited if the attacker is capable of measuring the
run time. Moreover, timing leaks can be exploited in a multi-threaded setting
even if attackers do not have access to precise stop watches [SS00].

Timing leaks occur in a conditional if the guard depends on the value of a
high variable and the two branches have different run times. Agat suggested a
transformation that eliminates timing leaks by padding. In this approach, the
type S of a program P is itself also a program and S has the same observational
behavior as P from the perspective of a low user. That is, for any two starting
states s,t that look the same to a low observer, the runs of P and S starting
in s and t, respectively, have the same length, i.e. identical run time, and the
corresponding states in the two runs look the same. Hence, timing leaks can be
eliminated by sequentially composing each branch of a conditional with the type
of the respective other branch. This holds in a sequential and also in a multi-
threaded setting [SS00]. The transformation preserves all aspects of a program’s
behavior except for timing, which is due to the construction of types (types
contain no assignments to high variables) and to a side condition in the typing
rule for conditionals with high guards, which is viewed below (no assignments
to low variables in the types of the branches, al(S1) = al(S2) = false).

B:high Cy—C{:5 Co—Ch:8 al(S1)=al(S2)= false
if B then C else Cy — if B then {C7]; Sa} else {S1; C4} : skip; S1; .52

3 Current Limitations

The transforming type system sketched in the previous section can be used to
check whether a given program has secure information flow and the transforma-
tion eliminates timing leaks to some extent, but it is not yet an optimal solution:

1. The program if h<0 then h:=h+1 else h:=h-1 is strongly secure.! However, if
we apply the typing rule from the previous section then this results in the
program if h<0 then {h:=h+1;skip} else {skip;h:=h-1}. Applying the typing rule
again results in if h<0 then {h:=h-+1;skip;skip;skip} else {skip;skip;skip;h:h-1}. In
summary, the transformation not only eliminates timing leaks from inse-
cure programs but also modifies secure programs that are secure already.
Moreover, the transformation is not idempotent, which also shows that the
transformation modifies some secure programs. Interestingly, the size of a
program grows, in the worst case, exponentially in the number of applica-
tions of the transformation.

2. The program if h<0 then I:=I+1 else I:=I+1 is strongly secure. However, the
typing rule from the previous section is not applicable for this program as the
branches contain assignments to low variables, i.e. the type check fails. For
the same reason, programs like if h<<0 then {h:=h+1;l:=I+1} else {l:=I+1;h:=h-1}
cannot be corrected by the transformation although there is an obvious cor-
rection: if h<0 then {h:=h+1;l:=I+1;skip} else {skip;l:=I4+1;h:=h-1}.

! Strong security [SS00] is the semantic security definition underlying Sabelfeld and
Sands’s security type system.

3. The side condition in the typing rule for conditionals with high guards (no
assignments to low variables) is somewhat incompatible with the typing rule
for while loops (depicted below). The latter rule requires that the guard of a
while loop contains no other variables than low variables. That is, while loops
occurring in the branch of a conditional with a high guard either terminate
immediately (guard evaluates to false when the while loop is reached) or do
not terminate (assignments to low variables are forbidden in the branches of
a conditional with a high guard). Hence, if the guard evaluates to true when
the loop is reached it will remain true. This severely limits the use of loops.

B:low C—=C':8
while B do C < while B do C’ : while B do S

4 Incorporating Unification

The branches of a conditional with a high guard must be observationally equiv-
alent for a low observer. That is, in the two branches, the same values must
be assigned to any given low variable, assignments to low variables must oc-
cur in the same order and at the same point of time, and the overall run
time of the branches must be identical. The transformation is limited to the
insertion of skip statements as it may slow down the program but must not
make any other changes to the program. To this end, we massage each of the
branches by inserting meta variables that may then be substituted by the se-
quential composition of an arbitrary number of skip statements (including the
sequential composition of zero skip statements, denoted by ¢). For instance, the
program if h<0 then {h:=h+1;l:=I+1} else {l:=I+1;h:=h-1} is lifted to the program
if h<0 then {h:=h+1;a1;l:=I+1;a2} else {as;l:=I+1;h:=h-1;a4}. One obtains a secure
program by applying the substitution aq\e, as\skip, ag\skip, and a4\e. We em-
ploy unification for automatically computing these substitutions. As the substi-
tutions need not make the two programs syntactically identical but rather only
observationally equivalent, we unify under a given equational theory that incor-
porates equivalences like, e.g., h := Frp =, skip (skip is observationally equiva-
lent for a low observer to assignments to high variables), h := Exp =1 h' := Exp’
(two high assignments are observationally equivalent), and [:= Ezp = | := Exp’
for expressions Exp and Fxp’ that evaluate to identical values in identical states
(semantically identical assignments to low variables are observationally equiva-
lent). Moreover, e.g., if B then Cy else Co =, skip; C3 if C; =1, C5 and Cy =, C5
(the evaluation of a guard is equivalent to a skip statement). We denote the
set of all unifiers for two programs C; and C3 under the equational theory by
U-, (C1,C5) and the application of a substitution o to a program C' by Co. This
leads to the following transforming typing rule for conditionals with high guards:

o dom(B) = high C1—=C7: 81 Co—C5: Sy
C7 81 = lift(C} : S1) Cf: 85 = lift(C} : So) o ele, (51,57)
if B then O else Cy < if B then C} o else Cho : skip; S1o

We are currently in the process of adopting known unification algorithms to
efficiently compute the set U, (S1, S2) of unifiers.

We see three main advantages of our approach.

Firstly, the precision of type checking is improved. Programs are not simply
rejected because branches of conditionals with high guards incorporate assign-
ments to low variables, but are carefully inspected. For instance, the program
if h<0 then I:=I+1 else I:=I+1 is rejected by the original type system despite it has
secure information flow. Our new type system correctly accepts this program.

Secondly, the transformation is capable of correcting more timing leaks. For
instance, the program if h<0 then {h:=h+1;l:=I41} else {I:=I41;h:=h-1} is rejected
by the original transformation and could not be corrected. Our new type system
transforms it into if h<0 then {h:=h+1;l:=I41;skip} else {skip;l:=I+1;h:=h-1}, which
is a secure program. Being able to type check and to transform programs where
while loops occur in branches of conditionals with a high guard, also broadens
the applicability of the transforming type system considerably.

Thirdly, the transformation leads to more compact and more efficient pro-
grams. For instance, the program if h<0 then h:=h+1 else h:=h-1 type checks with-
out any need for transformations. This is unlike in the original type system. More
generally, our transformation is idempotent.

Initial results indicate that we can obtain all of these improvements without
having to give up any of the desirable features of the original type system,
including soundness and the fact that the transformation affects no other aspects
of a program’s behavior than its timing. Elaborating this in full detail is the aim
of on-going work.

References

[Aga00] J. Agat. Transforming out Timing Leaks. In Proceedings of the 27th ACM
Symposium on Principles of Programming Languages, pages 40-53, 2000.

[Den82] D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[SMO03] A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security.
IEEE Journal on Selected Areas in Communication, 21(1):5-19, 2003.

[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded
Programs. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop, pages 200-215, Cambridge, UK, 2000.

[VS98] D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Lan-
guage. In Proceedings of the 11th IEEE Computer Security Foundations Work-
shop, pages 34-43, Rockport, Massachusetts, 1998.

