Universitat Konstanz

Fachbereich Mathematik und Statistik

Diplomarbeit

Fixed Parameter Algorithms on
Planar Graphs

von

Boris Alexander Kopf

Konstanz, Oktober 2002

Aufrichtiger Dank gebiihrt Frau Prof. Dr. Dorothea
Wagner fiir die Unterstitzung und Betreuung bei dieser
Arbeit. Bedanken mochte ich mich auch bei Stef-
fen Mecke und Marco Gaertler fiir wichtige Anregun-
gen und Hilfen. Nicht zuletzt geht grosser Dank an
meine Freunde und meine Familie, die mir schwierigen
Phasen immer beigestanden haben.

Contents

1 Introduction 7
1.1 Parameterized Complexity 9
1.1.1 Basic definitions oL 9

1.1.2 Optimization problems 9

1.2 Graphsand more 12
1.21 Graphs. 12

1.2.2 Planarity and r—outerplanarity 13

1.2.3 Separators and Fragments 14

1.3 The main ingredients L. 15
1.3.1 Baker’s algorithm 15

1.3.2 Alber’'sapproach 17

1.3.3 Combining both approaches 18

1.4 Contents and organisation 19

2 Subexponential FP-Algorithms 21
2.1 From planar to O(vk)—outerplanar graphs. 21
2.1.1 Different kinds of separations 21

2.1.2 The Layerwise Separation Property 24

2.1.3 Therecipeo 25

2.1.4 Finding the Separators 26

5

2.2

2.3

24

2.5

CONTENTS

Decomposing r-outerplanar graphs
2.2.1 Structure trees
222 Theslices
2.2.3 Slice subgraphs and separators.
Problems and subproblems
2.3.1 Arising difficultieso o oL
2.3.2 Dissectable problems00 L.
2.3.3 Optimal substructure and dynamic programming

The algorithms o o oo
2.4.1 Plugging it all together
242 BasicTools 0.
2.4.3 The pseudocode Lo
The analysis L
2.5.1 Correctness

2.5.2 Running time analysis

Strength of the presented concepts

3.1
3.2
3.3
3.4
3.5
3.6

Planar Independent Set
Planar Dominating Set
Planar Edge Dominating Set
Planar Minimum Maximal Matching
Planar s — t—Partition

Treewidth and fugitive search games

4 Conclusions and outlook

75
75
76
78
78
79
80

83

Chapter 1

Introduction

Fixed parameter algorithms are nothing new. Computer scientists have al-
ways specified running times of algorithms in terms of natural problem de-
pendent parameters, in many cases as a function of two or more variables.
See for example [13, p. 106].

Classic complexity theory neglects this fact. Time or space complexity of an
algorithm are usually formally defined as a function of exactly one natural
number n: The maximum of the algorithm’s running time or space consump-
tion regarding all problem instances of size n. An encoding scheme is used to
encipher the information that characterizes an instance of a given problem.
This code’s length is defined as the instance size - regardless of its semantics.

Parameterized complexity theory (see [11, 12]) formalizes to some extent
what algorithm designers have been doing for a long time: It allows for a more
differenciated encoding of problem instances and hence for a more detailled
theoretical analysis of what can be regarded tractable by computation.

The basic idea is simple: The instance is split in two parts, one called the
main part and the other the parameter. Complexity of an algorithm for
such a parameterized problem is consequently stated as a function of two
variables. If, for a given parameter, it is polinomial in the main part’s size, the
problem is regarded as fized parameter tractable. The class of fixed parameter
tractable problems is intended to consist of all problems that are solvable in
practise — as long as the parameter remains “small”. Besides from extending
the notion of tractability by computation, tailor-made concepts of reduction
and completeness provide new playgrounds for complexity theorists.

7

8 CHAPTER 1. INTRODUCTION

With this new complexity theoretic viewpoint, many well known results can
be given new names. Also, many new algorithm design tools have been
developed. These include reduction to a problem kernel, the method of
bounded search trees and algorithms for partial r—trees, to name just a
few. All of those tools yield typical running times of O(n°d*), with positive
constants c, d, with n as the main part’s size and k as the parameter’s size.

In [4], a new tool for designing fixed parameter algorithms was recently de-
veloped. It allows the construction of procedures to decide a certain family
of N'P—complete problems on the important class of planar graphs. What is
interesting about this new tool is that instead of the above mentioned typi-
cal running times it allows the construction of algorithms with subezponential
time complezity, namely of the form O(n°d"*) with constants ¢ and d. As was
pointed out in [4], this is the first known nontrivial — in terms of subexponen-
tial — parameterized complexity result for A/P—complete problems, making
it an interesting object of investigation.

The aim of this diploma thesis is to present this new method, apply it to new
problems and investigate its strength.

Preliminaries and organization: In the first chapter of this work, some
fundamental concepts are introduced and revisited. The reader is assumed
to have basic knowledge in the areas of algorithm design, complexity theory,
graph theory and elementary topology. Chapter 2 will mainly be concerned
with the presentation and analysis of the aforementioned design tool for pa-
rameterized algorithms. The third part of this thesis investigates the strength
of the presented methods. This is done by applying it to some well known
NP —complete problems.

Throughout this paper, an attempt has been made to introduce concepts no
earlier that necessary, in order to emphasize the motivation behind them.
Consequently, a more detailled outline of this thesis’ content is given in sec-
tion 1.4, directly after having introduced the basic toolkit.

To begin with, here are some basic definitions on parameterization.

1.1. PARAMETERIZED COMPLEXITY 9

1.1 Parameterized Complexity

1.1.1 Basic definitions

As it is common practice, we first restrict ourselves to decision problems and
language recognition. Let Y be a finite alphabet. The Kleene closure of ¥ is
denoted by X*. For a word = € ¥* we write |z| for the number of characters
it contains.

A subset L C ¥* x ¥* is called a parameterized problem. For (z,k) € L, x is
called the main part and k the parameter.

Definition 1.1. Let L be a parameterized problem. We call L fized pa-
rameter tractable if there is a function f : N — N, a constant ¢ € N and
an algorithm that correctly decides if (z, k) € L in at most f(|k|)|z|® steps.
We define FPT as the class of all fixed parameter tractable parameterized
problems.

Note that this definition of fixed parameter tractability leaves room for abuse:
the function f is not even required to be recursive. There are both weaker
and more restrictive variants of this notion (see [11]). In this text, however,
all examples will be of the above form, with f being recursive.

For a fixed k € ¥* we define Ly = {(x,k) : (x,k) € L} as k’s slice. If L €
FPT, the question (x,k) € Ly can be decided in polinomial time for any
fixed k. This is why a problem in FP7T is said to be tractable by the slice.

As it is standard practice, we often state running times in terms of abstract
problem specific parameters instead of the length of their encoding. This is
done assuming a reasonable encoding scheme is chosen. For details, see [13].
To emphasize this we will then denote problems by II instead of L.

1.1.2 Optimization problems

One class of problems that allows natural parameterizations is the class of
optimization problems. The standard method of turning an optimization
problem into a decision problem leads straight to a parameterized problem.
The following definition is taken from [13]:

10 CHAPTER 1. INTRODUCTION

Definition 1.2. An optimization problem Il is either a minimization problem
or a maximization problem and consists of a triple (Zy, Sir, vir) with:

(i) I as the set of input instances
(i7) Su(I) as a finite set of feasible solutions for each I € Iy

(iii) the solution value vy : (I,S) — vp(1,S) € N for every I € Ijy and S €
Su(l)

Given an optimization problem II and an instance I, the aim is to find a
feasible solution S’ € Sy(I) such that vy(Z,S’) is minimal — or maximal,
respectively — among all feasible solutions S € Sy(I). An optimal solution
is denoted by opty(I). We sometimes write vy (S) instead of vy (I,S) when
the choice of I is clear from the context.

1.1.2.1 A natural parameterization

The decision version of a minimization problem II can be stated as follows:
Is there a solution S of Il on I , such that vy(1,S) <k holds?

In the classic sense, an optimization problem II leads to a decision problem
for every natural number k. From the parameterized viewpoint it leads to
one parameterized problem with instances of the form (I, k).

For the sake of completeness we note that there are connections between
the concepts of approximability and fixed parameter tractability. Using a
slightly stronger notion of optimization problems, Cai and Chen proved that
the parameterized version of an optimization problem II is in FP7T once
IT allows for a fully polinomial time approximation scheme (FPTAS). For a
proof or a definition of FPTAS, see for example [11].

To distinguish between an optimization problem and its parameterized ver-
sion, we leave out terms like “maximum” or “minimum” in the latter, when
the situation is clear from the context.

1.1. PARAMETERIZED COMPLEXITY 11

1.1.2.2 Some examples

Here are some examples of parameterized problems that will be used through-
out the text. All of them are obtained from well-known optimization prob-
lems following the recipe above. See for example [11, 13]. For the concept of
graphs, see section 1.2.

VERTEX COVER
Instance: A graph G = (V, E)
Parameter: k€N
Question: Is there a set V' C V with |V’'| < k, such that every edge
has an endpoint in V.

INDEPENDENT SET
Instance: A graph G = (V, E)
Parameter: k€N
Question: Is there a set V! C V with |V'| > k, such that for all
u,v € V' the relation (u,v) ¢ E holds.

DOMINATING SET
Instance: A graph G = (V, E)
Parameter: k €N
Question: Is there a set V' C V with |V'| < k, such that every v € V
is either a member of V' or adjacent to some w € V.

INDEPENDENT EDGE SET
Instance: A graph G = (V, E)
Parameter: k €N
Question: Is there a set E' C F with |E'| > k, such that no two edges
e,e’ € E' share a common vertex.

EDGE DOMINATING SET
Instance: A graph G = (V, E)
Parameter: k€N
Question: Is there a set E' C E with |E’'| < k, such that every e € E
is either a member of E’ or adjacent to some €' € E'.

12 CHAPTER 1. INTRODUCTION

s — t—PARTITION (see [7])

Instance: A graph G = (V, E)

Parameter: k€N

Question: Is there a partition V = V; WV, with [Vi]| = s and |Vo| =t
such that there are at most k edges (v, w) € E with v € V}
and w € V5.

Later on we will examine some derivatives of these problems. Their definition
will be straightforward: For example PLANAR EDGE DOMINATING SET will
be nothing but EDGE DOMINATING SET with the class of instances restricted
to planar graphs.

1.2 Graphs and more

In this section we introduce the concepts of graphs, planarity and r—outer-
planarity and the notion of separators together with some related computa-
tional aspects.

Most of this can be regarded as common knowledge and will therefore be dealt
with only briefly. If not mentioned otherwise, the upcoming definitions are
abbreviated derivatives of definitions in [16]. For a more detailed presentation
refer to the original monograph.

1.2.1 Graphs

A simple graph G = (V,E) is a finite set V of vertices together with a
set E C V x V of edges. If E is symmetric, we sometimes regard E as a set
of unordered pairs of vertices and call G undirected. When FE is irreflexive, we
say that G contains no self-loops. A multigraph G = (V, E) is a set of vertices
together with a finite sequence of edges E = (e;)1<i<m Withe; € V x V
fori =1, ..., m. By definition, a multigraph allows multiple edges between
two vertices, whereas a simple graph does not.

For both types of graphs, a subgraph H = (V', E') of G is a graph with V! C V
and E' C E. For a set V' C V we denote by G [V'] the subgraph induced

by V', that is, the graph with vertex set V' together with all edges with both
endpoints in V.

1.2. GRAPHS AND MORE 13

As long as nothing else is mentioned, when we speak of a graph we mean a
simple undirected graph without self-loops. Following common practice, we
always use n for |V| and m for |E|.

For common data structures used to represent graphs in a computational
context, refer to [9].

1.2.2 Planarity and r—outerplanarity

Let z,y € R%. A z-y-path is a continuous function « : [0,1] — R? with
a(0) =z and a(l) = y. A drawing of a graph G = (V, E) is an injective
function ¢ that maps every vertex v € V to a point ¢(v) € R? and every
edge (v, w) to a ¢(v) — ¢p(w)—path. We say that two distinct edges e, e’ € F
cross if ¢(e) [0,1]N¢(e') [0, 1] not only contains common endpoints. We call
a drawing ¢ a planar embedding if no edges cross. A graph is called planar if
it has a planar embedding. A plane graph (G, ¢) is a planar graph G together
with a planar embedding ¢.

Elementary topology shows that the image of a planar embedding ¢, the
set J,ep @(€)[0,1], is a closed set in R?. Hence, its complement is an open
subset of R?. Its connected components are called faces. By a compactness
argument one sees that there is exactly one unbounded face. Call this face
the exterior face.

A very important result due to Euler connects the number of vertices and
edges in planar graphs.

Proposition 1. For a simple planar graph G = (V, E) the following equation
holds:
3[V[-6 > |E]|

For a proof see [16, pp. 256|, for example. This result will come in very
useful when analyzing running times of algorithms on planar graphs, for it
implies |E| € O(|V|).

The following definition is taken from [4]:

Definition 1.3. Let G = (V| FE) be a planar graph, ¢ an embedding. The
layer decomposition of (G, ¢) is a partition of V into sets Ly, . .., L, as follows:

(i) L, is the set of vertices on the exterior face of (G, ¢).

14 CHAPTER 1. INTRODUCTION

(i7) L; is the set of vertices on the exterior face of G [V\U;;ll Lj] for

1=2,...,T.
The set L; is called the ith layer of (G, @), its vertices are called level i vertices.

The number of layers r is defined as the outerplanarity of the embedding. The
outerplanarity of G is defined as the minimum outerplanarity over all of its
planar embeddings and is denoted by out(G). A graph with outerplanarity 1
is called outerplanar.

In the following we will sometimes assume an arbitrary planar embedding
is given and write G instead of (G, ¢). There is an algorithm that, given a
planar graph G = (V, E), calculates such an embedding in time O(|V'|). For
details, see [8].

1.2.3 Separators and Fragments

The notion of separators is of great importance in the upcoming work. There-
fore a separate paragraph is dedicated to them.

Let G = (V,E) be a graph. A subset S C V is a separator, if there is a
disjoint partition V = Vi & S & V5 such that no edge in E joins vertices
in V4 and V5. A triple (13, S, V) with that property is called a separation.
Note that this definition includes border cases such as empty sets S and V;
fori=1,2.

Following [4], we introduce a name for a special kind of separator. Let G be
a plane graph with layer decomposition (L;)1<;<, and S C UZL,O L; for some
indices 1 < 79 < 43 < r. We say that S separates layers L;, 1 and L; 4, if

there is a separation (5, S, V) with Uzo:—ll L; € Vpand U_; ,, Li C V1.

In the upcoming chapters, we will make extensive use of separators. Mostly,
we deconstruct a graph G = (V, E) into two subgraphs sharing the nodes in
in the separator, with their union containing all edges in £. To keep notation
simple, we call a pair of subgraphs G; = (V1 U S, Ey) and Gy = (Vo U S, E»)
with E; U Ey = E the fragments of the separation (V1, S, V3).

1.3. THE MAIN INGREDIENTS 15
1.3 The main ingredients

Our aim is to present the techniques and ideas for designing subexponen-
tial fixed parameter algorithms on planar graphs. The key ingredients are
twofold:

e a method that allows to design O(nc") algorithms for many N'P—com-
plete planar graph problems, where n is the size of the input graph, r
its outerplanarity and ¢ a problem-dependent constant.

e a method for deconstructing the main part G of an instance (G, k) of
a parameterized problem on planar graphs into O(yv/k)—outerplanar
components using separators with size bound O(V/k).

Before presenting the fusion of the two algorithmic methods in chapter 2,
they are first discussed individually in their original context.

1.3.1 Baker’s algorithm

The first of the previously mentioned methods was presented by Baker in
1983 and published as a journal article [5] in 1994. It consists of a generic
approach to optimization problems using dynamic programming techniques.

Once the method is adapted to a concrete NP —complete optimization prob-
lem II, it allows to finds an optimal solution for a planar instance G = (V, E)
in running time O(nc"), with n = |V|, r = out(G) and ¢ as a problem-
dependent constant. If we restrict our attention to the class of r—outerplanar
graphs it thus leads to linear time algorithms.

Different techniques have been developed to overcome the restriction to that
very special class of graphs.

In [5], a method to obtain approximation schemes for II on the class of
planar graphs is presented. It is based on separating the original instance G
into r—outerplanar subgraphs for an arbitrary r, and the application of the
aforementioned linear time algorithm to every such subgraph. By suitably
combining the solutions on the subgraphs, an approximation for the solution
of IT on G is obtained.

The approach presented in [4] can be seen as another possibility for extending

16 CHAPTER 1. INTRODUCTION

Baker’s algorithm to the class of planar graphs. Here, the result is a fixed
parameter algorithm.

While the fixed parameter approach is discussed in full detail later on, we
will give a short glimpse into the the design of approximation algorithms for
completeness’ sake.

1.3.1.1 Designing approximation algorithms

The details of Baker’s algorithm will be presented in sections 2.2 and 2.4.3.1,
for the next two paragraphs suppose an algorithm with the above properties
is given. We follow the approach of [5] and sketch the idea using a sample
problem. Due to the solution’s structure, MAXIMUM INDEPENDENT SET
suits our purposes best.

Let G = (V,FE) be an embedded planar graph with layer decomposition
Ly,...,L, and let V' C V with |V'| = M be a maximum independent set
on G. Observe that, due to planarity, every L; is a separator, separat-
ing 7} L from UP_,,, Li.

Choose an arbitrary 7 € N. We split the index set I := {1,...,p} into r +1
disjoint sets I, :=={i € I : i =gmodr + 1} for ¢ =0,...,r and partition V
into Cy, ..., C, with C; := ;. I, L; accordingly. Note that there must be at
least one index j, with

M
. ‘/’ < — 1.1

for it would otherwise contradict the maximality of V.

Suppose now we are given such an index jo. The graph G[V \ Cj,] has com-
ponents of outerplanarity bounded by . Observe that V' cuts down to - not
necessarily maximum - independent sets on the r—outerplanar components.
By (1.1), their union has a size of at least M. On the other hand, the
union of arbitrary independent sets on each of the disjoint components forms
an independent set on (. Taking the union of maximum independent sets
thus leaves us with an independent set on GG with a size of at least M HLI

To find the desired approximation we do the following: for every j =0,...,r
we calculate a maximum independent set for each of the r—outerplanar graph
components. Taking the union of those sets for a fixed j we obtain an inde-

1.3. THE MAIN INGREDIENTS 17

pendent set on G. We accept the independent set of maximum cardinality
among all j’s as an approximation for the maximum independent set on G.

This leads to an approximation algorithm with running time O(nrc") and
approximation ratio of at most ’";L—l For a precise definition of these concepts,
see for example [13].

A similiar approach can be used to design approximation schemes for prob-
lems such as MINIMUM VERTEX COVER (see [13]), MINIMUM DOMINATING
SET and many more. For details, refer to [5].

1.3.2 Alber’s approach

The second key ingredient was developed in [4]. A parameterized problem
on planar graphs fulfilling the so called Layerwise Separation Property ex-
hibits very useful characteristics: for any main part G = (V, E) of a yes-
instance (G, k), we can find a pairwise disjoint family of separators (.5;)1<i<s
for some s € N, with |S;| € O(Vk) for 1 <i < s.

With their help, G can be split into a sequence (G;)o<i<s of O(v'k)—outer-
planar subgraphs, with G; and G;;; sharing only the nodes in S;,; for ev-
ery 1 =20,...,s.

Having obtained this separation, the approach in [4] offers two possibilities:
one is based on the fact that the treewidth tw (see e.g. [6]) of a planar graph
G can be related to its outerplanarity by

tw(G) < 3out(G) — 1 (1.2)

Such a tree decomposition can be found in O(out(G)|G|) time.

Using the above separation and a tree decomposition for every component
G; according to equation (1.2), one can easily construct a tree decomposition
of size O(Vk) for the entire graph G. Many well known NP—hard graph
problems allow for O(nc")—algorithms with constants d and ¢, as soon as
the instances allow for a a tree decomposition of size r. Putting all of this
together one obtains O(ndc‘/’;)—algorithms. For details on the construction,
see [4], for an overview of the concept of tree decompositions, refer to [6].

Another possibility for using the separation is by directly applying algo-
rithms based on bounded outerplanarity to each of the components G; - and
piecing together the obtained solutions. One important tool for solving prob-

18 CHAPTER 1. INTRODUCTION

lems on O(vk)—outerplanar graphs is the previously mentioned algorithm
by Baker.

While the tree decomposition based approach allows for a mathematically
elegant description, the approach relying on [5] is geometrically motivated
and more direct. For this work, we decided to focus on the combination of
the approaches in [4] and [5].

1.3.3 Combining both approaches

As Baker’s algorithm is tailor-made for optimization problems, and Alber’s
approach deals with parameterized problems, we will from now on exclusively
be dealing with parameterized versions of optimization problems according
to section 1.1.2.

First, we take a look at the difficulties that occur when combining the meth-
ods introduced in 1.3.1 and 1.3.2. When applying the outerplanarity-based
approach to an instance (G, k) of a parameterized problem II, one is con-
fronted with solving the restricted problem on the @(v/k)—outerplanar sub-
graphs G of the original graph G for 2 =0, ..., s.

To ensure that solutions of Il on G; and G;;; “fit” together on the common
nodes S;j;1, certain boundary conditions have to be fulfilled. In the case of
VERTEX COVER, for example, one will have to look for minimum vertex
covers V; of G; and V},, of Gy, under the constraint that V/ N S; 1, =W =
i1 N Siy1 holds for a certain node set W C S;y4.
Thus, not the original problem II has to be solved, but a closely related prob-
lem IT' - the constrained version of II. For some problems II, this difficulty
can be overcome by a slight modification of the graph structure. In the ex-
ample of VERTEX COVER, a dummy neighbor is attached to every v € W
in G; and G;;1. As either v or its dummy neighbor must be contained in
in any vertex cover of the thus obtained graphs G} and G, ,, it can easily
be seen that the size of a minimum vertex cover on G equals the size of a
constrained minimum vertex cover on G;. Having made this transformation,
Baker’s algorithm for VERTEX COVER can be applied without modification.

However, the situation is not that simple in all cases. In [4] it was already
pointed out that in the case of DOMINATING SET there is no known modi-
fication of the constrained version to an equivalent unconstrained one - and

1.4. CONTENTS AND ORGANISATION 19

therefore no way of using Baker’s algorithm as a “black box”. The same
situation seems to occur for EDGE DOMINATING SET, MINIMUM MAXIMAL
MATCHING and many more.

Because of these difficulties we decided not to follow the approach in [4] and
opened the black box. In adapting Baker’s algorithm to constrained prob-
lems, we found that there are many similarities in the dynamic programming
techniques that are underlying both algorithms. Consequently, we tried to
work out these similarities and chose a unified approach to present both
algorithms.

This point of view has three main advantages: firstly, we overcome the diffi-
culties that arise when dealing with constrained problems in the above way.
Secondly, we are able to state a sufficient condition for a parameterized prob-
lem to be handled by both of these algorithms. Thirdly, we are able to pre-
cisely characterize what is meant by optimal substructure property, “one of
the hallmarks of dynamic programming” (see [9]) in our case.

1.4 Contents and organisation

In section 2.1 we present the notion of Layerwise Separation Property intro-
duced in [4]. In 2.1.4, we examine methods to obtain small separators that
cut instances into subgraphs of bounded outerplanarity.

In section 2.2, we present the recursive decomposition of r—outerplanar
graphs into small subgraphs, so called slices, due to [5]. We give an in-
terpretation of the original ideas by the consequent use of small separators.
Subsequently, section 2.3 develops the common theoretical viewpoint for both
approaches. We will examine when and how we can construct a problem’s
solution on G from solutions on subgraphs of G.

After the description of the decomposition and the theoretical foundations,
the pseudocode is given in section 2.4.

In section 2.5, this approach is analyzed in terms of correctness and running
time. Finally, chapter 3 is concerned with investigating the strength of the
presented concepts.

Our contributions Our own contributions are spread throughout the text.
First, we tried to find a mathematically sound, yet not too formal method

20 CHAPTER 1. INTRODUCTION

of description. This resulted in a thoroughly reworked mode of presentation,
including some missing proofs, especially in sections 2.2 and 2.4. Secondly,
we worked out how to get hold of the separators in section 2.1.4, as in [4]
only their existence is proven. Thirdly, the considerations of the strength of
the presented concepts made in chapter 3 consist of original work

Fourthly, and most importantly — the concept of dissectability and the result-
ing consequences developed in section 2.2. Where in [5] there are no general
considerations on the applicability of the concepts, the ideas in [4] are hidden
behind abundant formalism. Both approaches rely on dynamic programming
techniques and therefore require that the regarded problems have the opti-
mal substructure property (see e.g. [9]). However, this fact comes out only
implicitly. The notion of dissectability is a simple explicit formalization of
this property in the context of graph optimization problems. We will see that
this transparent notion provides a sufficient condition for the applicability of
both algorithms.

Chapter 2

Designing subexponential
FP-algorithms

2.1 From planar to O(vk)—outerplanar graphs

The key notion that allows us to prove that, given a parameterized problem
I1, we can find the desired partition for every instance (G, k) — with both
the size of the separators and the outerplanarity of the obtained compo-
nents bounded by O(vk) — is the so called Layerwise Separation Property
introduced by Alber et. al. in [4].

The first part of section 2.1.1 is concerned with defining these concepts.
With the definitions at hand, Alber’s theorem on the existence of suitable
separators can be stated and proven. In the subsequent section 2.1.4, we
show how we can algorithmically get hold of those separators.

2.1.1 Different kinds of separations

This section is essentially contained in [4], aside from differences in the mode
of presentation and the use of the notion of fragments defined in section 1.2.3.

First, we give a name to a family of separators Sy, ..., Ss with the property
that every S; is contained in at most w subsequent layers L;;, ..., Li yu 1
of a graph’s layer decomposition Ly, ..., L,. For ease of notation, we always
define L; = for j < 1 and j > r.

21

22 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

Definition 2.1 (Separation of layers). Let G = (V,E) a plane graph
with (L;)1<i<, as its layer decomposition. Furthermore, let w € N.

A separation of layers of width wis a sequence (S;)1<;<s of subsets of V' with
the following two properties:

(i) there is sequence of layer indices 0 < i; < --- < i; < r such that
2;t+w—1
S] g Uq]:ij LQ'

(i) S; separates layers L,y and Ly, 4,,. for every 1 <j <'s

Not every separation will serve our purposes. Our aim is to obtain (’)(\/E)—
outerplanar components of an instance (G, k), all separated by separators
with size bounded by O(vk). Thus we need a restriction on the size of the
separating sets as well as a bound for the difference of any two succeeding
layer indices ¢; and %;41. These are the defining properties of a balanced
separation of layers. We recycle the notation from 2.1.

Definition 2.2 (Balanced). Let S = (S;)1<j<s be a separation of layers of
width w. We say that S is a — f—balanced, if the following properties hold

(1) |Sj| < of
(ZZ) ij+1—ij S %-I—w and il S %-l—w
(ZZZ) ij +w S ij+1
for every j = 1,...s, where we define 45, :=r.

It should be noted that the variable 5 serves as a trade-off parameter and
will only be used for running time considerations. For better understanding,
imagine § = 1.

To see how such a balanced separation can be utilized, suppose we are given a
plane graph G together with its layer decomposition (L;)1<i<,. Let (Sj)1<j<s
be an a—f—balanced separation of width w. Use S; to separate G into a frag-
ment Gy = (Vo U Sy, E1) with Uqu:_ll L, C Vy and a graph G’ = (S} UV}, Es)
with F; U E; = FE as its complementary fragment in the sense of para-
graph 1.2.3 on page 14.

Reiterate this process with separators S; of G;_l for j = 2,...,s and set
G5 := G'_, to obtain the sequence of graph fragments Gy, ...,G,. By (i)

2.1. FROM PLANAR TO O(VK)—OUTERPLANAR GRAPHS 23

we see that out(G;) < § + 2w holds. With the help of (iii) we see that the
separators are pairwise disjoint, and by (%) of definition 2.2 we see that their
size is bounded by apf.

Next we define yet another kind of separation, the so called layerwise sep-
aration credited to Alber et al. (see [4]). This concept plays a central role
in what comes next, for it provides an easily proved sufficient condition for
the existence of balanced separations. It is called layerwise, because the
sequences ii,...,%s and 1,...,r in definition 2.1.1 coincide, i.e. there is a
separator for every layer.

Definition 2.3 (Layerwise separation). Let G = (V, E) be a plane graph
with (L;)1<i<, as its layer decomposition. A layerwise separation of width w
and size o of G is a separation of layers (5;)1<i<, of width w with:

(7') Sj C Ujﬂ}_l Lq

q=J

(i) 351 1Sl <o

Now we state a theorem that allows us to conclude from the existence of
layerwise separations that of balanced separations of layers. We give its
proof, because it contains ideas on how to find the desired separators. They
will be taken up in section 2.1.4.

Theorem 2.1 (Alber et al.[4]). Let G = (V, E) be a planar graph, ¢ an
embedding . Suppose (G, ¢) admits a layerwise separation of width w and
size 0. Then, for every B > 0, there exists a /o — S—balanced separation of
layers of width w.

Proof. Let Lq,..., L, be the layer decomposition. Partition the index set
I={l,...;r}intosets I, :={i € I : i = gmodw} for g =0,...,w—
1. Observe that by the size bound in (%) of definition 2.3 there is a ¢y €
{0,...,w — 1} such that

ISl <

J€ly,

holds. We thin out the set I, set by defining J := {j € I, : |S;| < B/}
The obtained separation (S;);es clearly fulfils conditions (i) and (%ii) of the
definition of a balanced separation in 2.2.

(2.1)

g1lQ

24 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

For item (%) of definition 2.2 let J = {i,...,4);/} in nondecreasing order.
Observe that the number of elements in I,, between two subsequent ele-
ments ¢; and 4,4, of J is given by the equation

Big1 — 1
L i S R
w

Because of the definition of J, all of the corresponding separators have sizes
greater than /0. By equation (2.1) we obtain

<w_1)5ﬁ<g
Tw

w

and so the desired

o

ij+1—zj_7+w

2.1.2 The Layerwise Separation Property

Until this point we have related layerwise separations with balanced separa-
tions of layers only for particular plane graphs. To design a decision algo-
rithm for a parameterized problem IT we need balanced separations for every
instance. In fact, it is enough to ensure such separations can be found for
every yes-instance of II, regardless of the embedding we use. If an instance
does not allow for such a separation we then know it must be a no—instance
and we can simply reject it. The concept of Layerwise Separation Property
presented in [4] is the formal expression of this idea.

Definition 2.4 (Layerwise Separation Property). A parameterized prob-
lem IT on planar graphs is said to have the Layerwise Separation Property
(LSP) of width w and size-factor d if, for every yes—instance (G, k) and every
embedding ¢ of G, we can find a layerwise separation of width w and size dk.

2.1. FROM PLANAR TO O(VK)—OUTERPLANAR GRAPHS 25

2.1.3 The recipe

The presented ideas can be utilized to design algorithms in the following way:
first, one proves the Layerwise Separation Property for the problem II. Given
a problem instance (G, k) together with an embedding ¢, one uses the next
chapter’s algorithm to find a v/dk—3—balanced separation for an arbitrary 3.
If this fails, we reject (G, k), for the Layerwise Separation Property together
with theorem 2.1 implies that we are dealing with a no-instance. If we
succeed, we go on using the methods of the subsequent chapters. They help
us to finally decide whether to reject or accept (G, k).

26 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.1.4 Finding the Separators

In this section we take a look at methods that actually find a /o —f—balanced
separation of layers, assuming the existence of a layerwise separation of size o.

Recycling the ideas and notation of the proof of theorem 2.1, our aim is to
find an index go that fulfils equation (2.1). To do so we simply test all index
sets I, with g =0, ..., w—1 as follows: for every 7 € I, we determine whether
there is a \/o—sized vertex set separating L; 1 and L;,. If two succeding
indices with that property lie more than /o /8 + w apart, g cannot be the
qo we are looking for. If we eventually find ¢g with the desired property, we
are done and can continue with the algorithms of the subsequent chapters.
If our search fails, we return NIL.

2.1.4.1 Balanced Separation

The above idea is captured in a method called BALANCED SEPARATION.
Called with arguments «, §,w and the layer decomposition, it tries to find
a a— f—balanced separation of layers of width w. It makes calls to a method
called SEPARATOR, handing over a3 and (L;);j_1<i<j+w fOr some j. As we
will see later on, SEPARATOR decides whether there is a vertex set of size a3
separating L; ; from L;,, — and returns it in case it exists. Note however,
that the separators obtained by these methods do not necessarily coincide
with the ones in the existence proof of theorem 2.1.

BALANCED SEPARATION((L;)1<i<r, @, B, w)
1 forg=1tow
2 doS;«+ 0
3 J< ¢ Joq
4 while j <rand j —jo < a/f+w
5 do if SEPARATOR((Li)j_lgiSj_HU,046) returns Sj 7é 0
6 then Sq — Sq U {S]}
7 Jo<J
8 J=Jt+w
9 ifr—jo<a/f+w
0 then return S
1 return NIL

1
1

2.1. FROM PLANAR TO O(VK)—OUTERPLANAR GRAPHS 27

The remaining problem is to determine an algorithm SEPARATOR that finds
a minimum sized set of vertices that separate L;_; from L;.,. It can be
solved using standard network flow methods. To be able to make use of
them we first introduce some notation, most of which is taken from [9].

2.1.4.2 Some basic definitions on networks

A flow network N = (G, s,t,c) is a directed graph G = (V, E) with a capacity
function ¢ : E — RU {oo} and two distinguished vertices s,t € V. We call s
the source and t the sink of the network.

A s — t—cut or simply cut (S,T) in N is a partition V = SWT with s € S
and t € T. The capacity ¢(S,T) of a cut is defined as the sum of capacities
of edges that leave S, that is, ¢(S,T) := > cg D wer c(v,w). A minimum
cut on N is a cut with minimum capacity among all cuts on N.

By a s — t—path in a (directed or undirected) graph G = (V, E) we mean
a sequence s = vy,...,v, = t of vertices in V, such that (v;,v;41) € E
fori=1,...,p—1. A s —t—separator in a (directed or undirected) graph
G = (V,E) with s,t € V is a subset S C V \ {s,t}, such that there is
no s — t—path in G[V'\ S].

2.1.4.3 Separators and cuts

In this section we will describe how the problem of finding a set S of ver-
tices that separate layers L;_; and L, is transformed to a maximum
flow problem. Firstly, observe that finding such a set is equivalent to find-
ing a minimum sized s — t—separator in the (undirected) graph obtained

from G [Uf;g’_l Lq} by identifying all nodes in L;_; and naming them s, and
identifying all nodes in L;,, to a new node ¢ while conserving all edges. For
simplicity of notation, assume from now on that we are given an undirected

graph H = (V, E) with two nodes s,t € V.

Firstly, we create a flow network H for H with the property that the min-
imum cuts in H correspond to the minimum sized s — t—separators in H.
Utilizing the Max-Flow-Min-Cut, duality a simple modification of the well-
known Ford-Fulkerson-algorithm for finding maximum flows does the job.

We start off by creating the Even-Tarjan-Reduct H of H as described in [14].

28 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

In the first step we introduce two directed edges (v, w), (w, v) for every undi-
rected edge (v, w) € E. In the second step, we split every vertex v € V into
two vertices v, v"” connected by a directed edge (v',v"”). The edges that led
into vertex v are attached to v, the edges that parted from v are attached
to v".

Formally: H := (V,E) with V := {v' :v € V}U{v" : v € V} and E :=
{@Wv") ;v e VIU{" w'): (v,w) € E}U{(w", V) : (v,w) € E}

We give H flow network structure by defining c(e) = 1 for every edge of the
form e = (v, v"), with v € V' \ {s,t} and c¢(e) = oo otherwise. We set s’
as the source, t" as the sink of the network H. Due to the construction,
there are close connections between H and H. We point will out some of the
important ones.

Proposition 2. The v — w—paths of H are in 1-1 correspondence with the
directed v' — w"— paths of H by

(V, V1 Uy w) > (V0" 07,07 v ol w! W)
Proof. The definition of H shows that the right hand side defines a v' — w"—
path if the left hand side is a v — w—path in H. On the other hand, ev-
ery v' — w"—path in H is of that form, because the only edge leaving a
vertex u' — respectively entering a vertex u” —is (u/,u"), and all other edges

in the H—path directly correspond to edges in H. O

Proposition 3. A minimal s — t—separator of cardinality d in H induces a
cut of capacity d in H

Proof. Let v1,...,v4 be a minimal s — ¢ separator in H. We show that the
edge set C := {(v],v]),..., (v}, v])} C E forms a cut. We define

S=:{veV:thereisa s —v—pathin H\C}

and T := V \ S. By the definition of S it is clear that the only edges go-
ing from S to T can be the the ones in C. It is also clear that s’ € S
and v{,...,v; € T. Suppose now that v; ¢ S for an index i € {1,...,d}.
That is, there is no path connecting s’ and v, without using an edge of the
set C'\ (v}, v!') and therefore, according to proposition 2, no s —v;—path in H
without a vertex {v1,...,v; 1, Vit1,..., Va}. Then, {v1,..., 0 1,0i11,..., 0} is
also a s — t—separator, contradicing the minimality assumption.

2.1. FROM PLANAR TO O(VK)—OUTERPLANAR GRAPHS 29

To show ¢ € T, assume there is a s’ — ¢ path in H. According to propo-
sition 2 it reduces to a s — t—path in H, contradicting the assumption
that v{,..., v, is a separator. O

Proposition 4. A cut (S,T) in H of finite capacity d induces a s—t—separator
of cardinality d in H.

Proof. Because ¢(S,T) < oo and the fact that edges in H have either infinite
or unit capacity, we can assume (v}, v}),..., (v, v]) are the edges that lead
from S to T'. In particular, every s’ — ¢"-path contains at least one of them.
Making use of proposition 2 we see that the set {vy,....,v4} C Visas—t
separator in H. O

Proposition 5. The minimum cuts in H correspond to minimum size s —t—
separators in H via the above connection

Proof. This follows directly from propositions 4 and 3. O

Having made this reduction, only the problem of determining minimum cuts
remains.

2.1.4.4 Cuts and flows

We use the well-known Max-Flow-Min-Cut-duality to determine a minimum
cut in H. First, we define what we mean by a flow in a network N.

A flowin N is a function f : E — R, that satisfies the following conditions
(i) for all (u,v) € E : f(u,v) < ¢(u,v)
(id) for all v € V\ {s,8} : S e F(1,0) = Xy £ (0,)

We note that

Z f(S,U)— Z f(’U,S)Z Z f(’l),t)— Z f(t’v)

(s,v)EE (v,8)EE (v,t)EE (tw)eE

holds and define the left hand side of this equation as the wvalue |f| of the
flow f. A maximum flowon N is a flow with maximum value among all flows
on N.

30 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

First, we state the famous Max-Flow-Min-Cut-theorem as in [9]. It shows an
important duality between cuts and flows in a network and thus allows us
to get hold of our set of separators using a slightly modified version of the
well-known Ford-Fulkerson algorithm for finding maximum flows.

To state the theorem and the algorithm we need some more notation, taken
from [16]. Let N = (G, s,t,c) with G = (V, E) be a simple flow network.
Let p = (s = vy, Vo, ..., Ur_1,t = v,) be an undirected s—t path, that is, a path
in the underlying undirected graph. A pair (v, w) of successive nodes in p is
called a forward edge, if (v,w) € E, and backward edge if (w,v) € E. Given
a flow f, we call an undirected path p an f—augmenting path if f(v,w) <
¢(v,w) for every forward edge and f(v,w) > 0 for every backward edge in p.
Let p be a f—augmenting s — t—path. Define

5(v, w) = c(v,w) — f(v,w) if (v,w) is a forward edge
DI fw,w) if (v, w) is a backward edge

and let A := min{é(v,w) : (v, w) on p}.

Define f,(v,w) = A, if (v,w) is a forward edge and set f,(v,w) = —A
if (v, w) is a backward edge. Extend it to a function on E by setting f,(v, w)
to 0 if neither (v, w) nor (w,v) lie on p. The function f + f,, defined by
(f + fp)(v,w) :== f(v,w) + fp(v, w) for every (v,w) € E, clearly yields a flow
on N with |f + f,| = |f| + A (see also [16], lemma 4.3.3). If we say we
augment f along p we mean the transition from f to f + f,.

The following theorem and algorithm show that the notion of augmenting
paths can be used for finding maximum flows and minimum cuts.

Theorem 2.2 (Max-Flow-Min-Cut-Theorem). Let N = (G, s,t,¢c) be a
flow network and f a flow in G. The following conditions are equivalent:

(i) f is a mazimum flow
(ii) N contains no f-augmenting paths

(i5i) |f| = ¢(S,T) for a minimum cut (S,T) of N.

Moreover, given a maximum flow f, the set S of all vertices v that can be
reached by an augmenting s — v path in in N induces a min-cut (S,T).

2.1. FROM PLANAR TO O(vVK)—OUTERPLANAR GRAPHS 31

The proof of this theorem can for example be found in [9]. The last remark
is not explicitly stated but a direct consequence from the proof.

By this further reduction the only thing left to do is to determine a maximum
flow and use breadth-first-search to obtain the set S. To find a maximum
flow we use a slight modification of the well-known Ford-Fulkerson algorithm.
A generic version of that method is stated in [9] as follows:

FORD-FULKERSON-METHOD(G, s, 1, ¢)

1 initialize flow f to 0

2 while there exists an f augmenting path p
3 do augment flow f along p

4 return f

We modify this method according to our needs. Because we are dealing with
integral edge capacities, in every pass of the while- loop flow is augmented
by at least 1. As we are only interested in vertex separators of a certain
size d or smaller, we can stop after at most d passes of the loop. If then
we cannot find any augmenting s — t—paths, we use breadth-first-search to
determine the vertices that can still be reached from s. By the remark in
the Max-Flow-Min-Cut theorem we have thus found a minimum cut and by
proposition 5 a minimum sized s — t—separator. If after d passes we still
find augmenting s — t—paths we return NIL. Note that checking if there is
an augmenting path p in line 2 can be done by breadth-first-search in time
O(|V]). For details, see [9].

32 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.1.4.5 The algorithm Separator

Now we are ready to state the SEPARATOR-algorithm:

SEPARATOR((L;) ;- 1<i<j+w: d)
1 let H < G[(Li)j-1<i<j+u]
identify vertices in L;_; with s
identify vertices in L, ,, with ¢
construct the Even-Tarjan-Reduct(H = (V, E), s',t", c)
for each edge (v,w) € E
do initialize flow f to 0
do ~—0
while dy < d and there exists an f—augmenting s — ¢ — path p
9 do augment f along p
10 do < dy+1
11 ifdy=d+1
12 then return NIL
13 determine the endpoints v}, ...,v}; , of f — augmenting paths
14 return S := {vi,...,v49-1}

0o ~J O O i W N

2.1.4.6 The analysis

Because of the above considerations and the fact that we are mainly dealing
with standard methods we only give a brief analysis. The following proposi-
tion holds:

Proposition 6. Let G be a plane graph that allows a layerwise separation of
width w and size 0. Let (L;)1<i<, be its layer decomposition and let 5 > 0.
Then BALANCED SEPARATION((L;)1<i<r, /0, B, w) returns a /o — f— bal-
anced separation of layers of width w after O(|G|w+\/ap) steps.

Proof. The correctness of SEPARATOR. follows from proposition 5 together
with the Max-Flow-Min-Cut-theorem and the correctness of the Ford-Fulker-
son-method. This, together with the proof of theorem 2.1 implies the cor-
rectness of the method BALANCED SEPARATION.

The time consumption of a call to SEPARATOR is in O(n'\/c3), where n’ is the
number of vertices of the subgraph it is called on. BALANCED SEPARATION

2.1. FROM PLANAR TO O(vK)~OUTERPLANAR GRAPHS 33

calls SEPARATOR at most w times on every node, yielding the claimed result.
O

34 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS
2.2 Decomposing r-outerplanar graphs

In this section we describe the decomposition of r—outerplanar graphs into
trivial subgraphs. Apart from the differing mode of presentation, it is essen-
tially taken from [5].

In part 2.2.1 we construct a forest that captures the structure of a given
r—outerplane graph G. In 2.2.2 we make use of this forest-structure by
recursively defining a sequence of subgraphs — named slices — of G. They have
the property that neighboring slices share only a few common boundary nodes
and that their union yields the entire graph G. Subsequently, in chapter 2.2.3,
we interpret this recursive definition in terms of a decomposition of G' via
separators, thereby providing a common viewpoint for this and last chapter’s
considerations and a basis for the theory developed in section 2.3.

To get a feel for this decomposition, consider a very special example of
a r—outerplanar graph: imagine a graph consisting of r nested circles. The
idea is to cut this graph into slices like a pie: from the center to the exterior
face such that two neighboring slices share only one node from each of the r
layers.

However, the shape of general r—outerplanar graphs may be much more
complicated. To capture this structure, the so-called structure trees are used

2.2.1 Structure trees

Let G be an embedded r-outerplanar graph and (L;)1<;<, its layer decom-
position. Observe that G [L;] is outerplanar for i = 1,...,r. Each of the
connected components of G [L;], the level i components, is contained in one
face of the graph G [L; 4] for i =2,... 7.

Insert dummy edges to connect G [L;] and all level 4 > 1 components con-
tained in a common face. Furthermore, introduce a dummy edge as a copy
of every cut-edge (i.e. an edge whose removal disconnects the component) of
such a component. This construction leaves us with a graph in which every
level 7 — 1 face contains at most one, 2—edge—connected but not necessar-
ily simple, level 7 component. This modification simplifies the construction
of the structure trees. During the calculation, dummy edges will simply
be ignored. Finally, keep a fized triangulation of the region between every

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 35

level 7 component and its enclosing face in mind. Such a triangulation can
be obtained in linear time (see [5]).

We start by constructing a labeled and rooted tree Ty for every such 2—edge—
connected outerplanar component H. After that, we use the triangulation
to relate the vertices of 7y with the tree of the enclosing face’s component,
capturing the global structure of G’s embedding.

To be able to linguistically separate the different structures involved, we
follow the example in [5] and call the vertices of the tree Ty vertices, whereas
graph H'’s vertices will be called nodes. We use variables u, v, w for vertices
and z,y, z for nodes.

2.2.1.1 The construction of 7y

For this section, let H be a 2—edge—connected, outerplane graph.

Call edges adjacent to H’s exterior face exterior edges. An edge that is not
exterior is called an interior edge Firstly, introduce a vertex for every exterior
edge and a vertex for every interior face of H. Call the first ones edge vertices
and the latter ones face vertices. Connect every edge vertex to the vertex
of the face it is adjacent to, and connect vertices of faces sharing a common
edge. Observe the close relationship between the weak dual — i.e. the graph
obtained from the dual graph by removing the exterior face’s vertex — of a
plane graph and the graph just constructed. A slight modification of a result
on the weak dual of outerplanar graphs stated in [16, p. 254] shows that our
graph under construction is actually a forest.

If it consists of more than one tree one easily sees that, due to the connectiv-
ity of H, must be faces meeting in cut-nodes of H (i.e. nodes whose removal
disconnects H). Successively introduce edges between such face vertices be-
longing to different trees until the forest becomes connected. Call the tree
thus obtained 7g. Denote the forest of all such trees of graph G by 7g.

For a small example, see figure 2.1. The black vertices, together with the
dashed edges, depict the structure tree of the graph given by the white nodes.

Next, we will label 7g’s vertices recursively and define a natural ordering
on the children of every face vertex. The ordering and labeling will be with
respect to a root vertex that has yet to be chosen. Details of the root choice
follow subsequently.

36 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

Figure 2.1: Construction of the structure tree

2.2.1.2 The ordering

Pick a face vertex v to be the root of 7. Choose an arbitrary child w of v to
be its first descendant. Number the children of v in order of appearence in
a counterclockwise walk around v’s face starting with w. In this walk, face
vertices correspond to the edge — or node, in the case of cut-nodes — they
share with v’s face. Recursively repeat this procedure on every child u of
v that is a face vertex, with the only modification being that the first child
of u is now fixed to be the next one to the edge or node corresponding to u
— again in counterclockwise order.

We have thus defined a linear ordering < on the children of every face vertex.
This ordering naturally extends to the leaves of the tree. When we talk about
the succeeding sibling or the succeeding leaf we mean the next vertex or leaf
with respect to < or its natural extension.

2.2.1.3 The labeling

Now we assign directed edges as labels to Ty’s vertices. Label each edge ver-
tex by the edge it represents, directed in the direction of the counterclockwise
walk around its the face of its ancestor. Label a face vertex v with (z,y),
with = being the first node in the label of v’s first child and y as the second
node in the label of v’s last child. From now on we sometimes identify a tree
vertex v by its label (z,y) and write v = (z,y).

The result of the labeling procedure of the graph in figure 2.1 is depicted
in 2.2. The vertex of the leftmost face was chosen as root, its first child is
the edge (z1,z3).

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 37
g
@ @ ().

(z4,x6) . (zg, a:s). (zg, ms).

(z6,27) .’-'-‘(27, zg) . (zs, wﬁ).

Figure 2.2: The labeled structure tree

2.2.1.4 Root choice

Up to now we have defined a tree for every layer component with vertices
labeled and ordered recursively with respect to an arbitrarily chosen root. In
this part we describe how this root is chosen in order to relate the trees of
nested layer components according to our needs. The choice might not seem
compelling at first sight. When defining slices, however, it will become clear
that it was made in a way so that the slice boundaries of the root vertex of
a component are natural extensions to those of the enclosing face’s vertex.

Choose an arbitrary face vertex v to be the root of G [L1]’s tree. Let H be a
layer 7 > 1 component and suppose that the structure tree for all layer ¢+ — 1
components are already constructed, rooted and labeled. Let v = (z,y) the
face vertex of the level 1 — 1 face that encloses H. If x # y, let z be the node
in H that is adjacent to both x and y in the chosen triangulation. If x = y,
let z be an arbitrary example of the nodes with that property. Choose the
root vertex u of Ty as the vertex of the face which node z lies on and choose
its first child as the vertex of the edge in H leaving z in counterclockwise
order. The labeling conventions assure that u = (z,z) holds - and this is
precisely what we want because of the reasons sketched above and worked
out in detail in the next chapter.

38 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.2.1.5 Some properties of structure trees

We will point out some interesting attributes of the trees just constructed.

Remark 2.2.1. Let v be a face vertex of 7. If it is the root vertex, its label
is of the form (z,z) for some node z. If v = (z,y) with x # y then (z,y) is
the edge shared by v’s and its parent’s face. (x,y) is directed in the direction
of a clockwise walk around v’s face and a counterclockwise walk around its
ancestor’s face.

Remark 2.2.2. Let v be a face vertex with children vy, ...,v;. The chil-
dren’s labels together with v’s inverted label represent a counterclockwise
walk around v’s face. The labels of the leaves of Ty represent a directed
counterclockwise walk around the exterior face of H.

The last two comments give an idea of how the structure of the trees can
be used to define the slices mentioned earlier. To define a boundary running
from a level ¢ component H to its enclosing face in level 7 — 1, we have to
relate the leaves of Ty to the children of the enclosing face’s vertex. To do
this we can use < to process both the leaves and the children in order of
appearance.

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 39

2.2.2 The slices

In this section we will recursively define the slices the r—outerplane graph
G is composed of. We do this by defining left and right boundaries 0, and
0, for every tree vertex v. These boundaries run from the level of v to the
exterior face, containing exactly one node from every level subgraph. Using
the ordering relation < the slice is defined as the node set that lies between
the left and right boundary nodes.

What is meant by left and right for a vertex v = (z,y) will be defined in
precision later on. Intuition coincides with the definition when the viewer
is imagined in the same plane as the graph, looking in the direction of the
edge (z,y) from outside the face the edge lies on.

In the following we use the same fixed triangulation between the level sub-
graphs and their enclosing faces as before.

2.2.2.1 Boundary definition

It would be sufficient to give mappings from level ¢ to level i — 1 nodes for
i = 2,...,r in order to define the boundaries of slices and use the ordering to
define the slice as the subgraph included within two such boundaries. The
possible presence of cut-nodes makes this approach impossible for they allow
no such unique assignment.

The solution is to use the trees and the information their labels carry to
give a mapping from the set of level i wvertices to level i+ — 1 vertices for
every ¢ = 2,...,r. Having defined such a mapping, we use it to give a
definition of boundaries mentioned above.

For a level ¢+ component H; and its enclosing level 7 — 1 component H;_ 1,
these mappings of nodes will be of the form A, : V(Tg,) = V(Tw,_,) U {x}
and A, : V(Ty,) = V(Ta,_,) U {x}, respectively.

For their definition, let vy,...,v; be the leaves of Ty, and wy,...,w, €
V(Tw,_,) the children of the enclosing face’s vertex w. Pick two succes-
sive leaves v; = (2, x;41) and vj41 = (2j41,%j42). There is a node z(j) €
V(H;-1) and an edge (41, 2(j)) in the chosen triangulation such that the
edges (241,2;), (%41, 2(j)) and (211, 2,42) appear in counterclockwise or-
der around node ;. Call such a node z2(j) dividing point for v; and v, ;.

40 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

Ar(Tj,Tj41)

Figure 2.3: definition of A; and A,

Observe that the dividing points can always be chosen such that z(p) ap-
pears before z(p + 1) in a counterclockwise walk around the enclosing face
forp=1,...,t—1.

Inductively set w(j) = (2(j),b) as the vertex of wy,...,w, with w(j) >
w(j — 1) which represents the edge leaving z(j), and w(j) := * if there is no
such edge. Let w(j) € {wy,...,w,} be the predecessor of w(j) with respect
to <, and W(j) := *, if there is none. Note that either w(j) # x or W(j) # x
holds. Furthermore, set w(0) = w; and w(t) = wy.

Definition 2.5. We define A, (v;) = w(j — 1) and A, (v;) = w(j) for ev-
ery j = 1,...,t. If u is a face vertex, u; is its first and u, its last child,
set A (u) = A (uq) and A, (u) = A, (us)

An example for the definition of A; and A, is depicted in figure 2.3.

The definitions of A; on v; and A, on v; mark the extreme left and right
boundaries of any of the face’s children, in accordance with the choice of the
root in 7p,. Now we can recursively define the left and right boundary sets:

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 41

Definition 2.6. For v = (z,y) we define 0, (v) as:
(LB1) {«} if v is a level 1 vertex

(LB2) {z}U0O A (v) if v is a level i vertex with 7 > 1
and A (v) #

(LB2) {z}Ud: Ar(v) if v is a level i vertex with ¢ > 1
and A (v) = *

The set 0, (v) is defined by (RB1), (RB2) and (RB2’) similarly: simply sub-
stitute x by y, [by r and vice versa.

The definition of (LB1) and (LB2) are quite intuitive, the definition of (LB2’)
deals with the border case and will become clear later.

Before giving a definition of slices, we prove some important properties about
boundaries.

Proposition 7. The following statements are true:

(i) 0 (v) =0 (v1) and O, (v) = O (v¢) if v is a face vertex and vy, vy are its
first and last child, respectively.

(it) O: (v;) = O (vj+1) for two successive vertices v; and vjiq.
(153) |0 (v)| =i and | 0; (v)| =@ for every level i vertex v.

(iv) for a face vertex u and an enclosed component with root v = (z,x)

O(u)U{z} =0 (v) and O,(u) U{z} = 0, (v) hold.

Proof. Assertion (i) follows directly from face vertex labeling conventions
and the definition of A; and A, on face vertices.

Claim (7): Because of (i) we can restrict ourselves to successive leaves. We
prove (ii) by induction on the level index. For neighboring level 1 leaves v; =
(@, zj+1) and vj41 = (Tj41,%42) a simple application of (LB1) and (RB1)
does the trick. For consecutive level ¢ > 1 leaves v; and v;;; labeled as above
and A (vj41) # * # A, (v;) we ascertain by definition 2.5 that A (v,41) and
A; (v;) are adjacent level i—1 vertices. Using induction hypothesis and (LB2)
and (RB2) proves the claim. In the case that, for example, A, (v;) = % holds,
let wy,...,w; be the children of the enclosing face’s vertex. The definitions

42 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

of A, and A, show that Aj(v;41) = w; in this case. Then also A (v;) =
w; holds and with (RB2’) we get 0; (v;) = {zj41} U A (v;) = {zj41} U
O Ay (vj41) = O (j41,T;42). The same arguments hold for A.

For assertion (%ii) recall that A} and A, are mappings from level i to level
i — 1 vertices. The sets 0, (v) and 0, (v) thus contain exactly one node from
each of the ¢ level subgraphs.

For claim (iv) let vq, ..., v; be the leaves of the enclosed component with root
v = (z,z) and uy, ..., us the children of u. Note that the labels of v; and v,
are of the form (z,x9) and (x4,), respectively. From the definition of A it
follows that A (v1) = u; and so

& (v) 2o (v1) "2 {2} VA A (1) = {2} U d (ur) L {2} Ut (u)

The same argumentation holds for A,.

2.2.2.2 Slice definition

In this section we recursively define a node set sl (v), called the slice, for
every tree vertex v € V(7g). In [5], the slices are defined as subgraphs of
G and are — with one exception — equal to the subgraphs of G induced by
their node set sl (v). Yet, from the theoretical viewpoint to be developed
in section 2.3, it will turn out to be useful not to be restricted to those
induced subgraphs but to admit more general slice subgraphs G, C G [s] (v)].
Their carrying node sets, however, remain invariant. Consequently, we define
slices as the corresponding invariant node sets and leave the precise — and, in
our approach, problem dependent — definition of the slice subgraphs to next
chapter’s considerations.

In addition to the theoretical advantages mentioned earlier, this approach
allows for a more compact description of slices.

Let v = (x,y) be a level i vertex. For ¢ > 1 define N (v) as the set of all
level i — 1 vertices w with A; (v) < w < A} (v) and N (v) = 0 if A; (v) =
or A, (v) =%

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 43

Tj+2 Zj—1

Figure 2.4: a triangulation leading to a degenerated slice

Definition 2.7. We define the slice sl (v) of a vertex v as:

(S1) {z,y} if v is a level 1 leaf

(52) {z,y} UU,uen (sl (u) if v is alevel i > 1 leaf and N (v) # 0
(52) & (v) U0 (v) if v is a level ¢ > 1 leaf and N (v) = ()
(S3) U§:1 sl (v;) if v is a level ¢ face vertex without en-

closed level 7 + 1 component and chil-
dren vy, ..., v;

(S4) sl(u) if v is a level i face vertex and w is the
root vertex of the enclosed level 7 + 1
component

Before we prove important properties of the correlation of slices and their
boundaries, we give a explanation for the definition parts (LB2’) and (S2’).
Consider the example depicted in figure 2.4.

The nodes z;_1, z;, ;41 and ;4o depict elements of the component enclosed
by the face which y,_1,y, and y,41 belong to. Let y, be the dividing point for
both (z;_1,2;), (z;,2j+1) and (2j,Z41), (¥j41,Z;+2) This choice of dividing
points leads to A; (z;,2j1+1) = (Yp, Yj4p) and Ay (25, 241) = (Yp—1,Yyp) Which
then leads to NV (2, z;41) = 0. We call a slice with that property degenerated.
For practical reasons one wants degenerated slices to have the same boundary
length as non-degenerated slices. Therefore the slice is defined as consisting
only of the boundary nodes defined by 0, and 0,. Part (i) of proposition 8
claims that in the degenerated case the left and right boundaries coincide

44 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

on levels 1,...,i — 1. Similar considerations hold for the case Aj(v) = % or
A;(v) = *. Thus we defined (S2’) in the above way only for esthetic reasons.

With the slice and boundary definition at hand prove some important prop-
erties in proposition 8. Part (%ii) should be emphasized, for it provides the
connection between the geometric intuition and the formal definitions.

For ease of formulation we introduce some more notation: for a tree vertex
v = (z,y), the embeddings of G [0, (v)] and G [0; (v)], together with the edge
(z,y) and the edges of the exterior face running from 0 (v) to 0, (v) form a
bounded region in the plane. To see this, note that A; and A, are defined
along the the chosen triangulation. We call the topological closure of that
region the sector of v. Furthermore, we introduce the interior of a slice sl (v)

as int (sl (v)) =sl(v) \ (3 (v) U O, (v)).
Proposition 8. The following statements hold:

(i) if v is a level i vertex with degenerated slice, then 0y (v) and O (v)
coincide on levels 1,...,7 — 1.

(ii) if v is a face vertex, then there is a child u of v with & (u) N0, (u) = 0.

(iii) the set of nodes in the sector of v equals sl (v)

(iv) the slice of a vertex v consists of the slices of all its descendants and
their enclosed components.

(v) sl(v) = V(G) if v is the root of the level 1 component.

(vi) the triple (V' \sl (v), 8, (v)U0; (v),intsl (v)) forms a separation for every
tree verter v.

Proof. The proof for (i) in the case of degeneration because of A, (v) = x
or Ay (v) = * follows from parts (RB2’) and (LB2’) of definition 2.6. If
otherwise N (v) =) it can be only because A (v) = w; and A, (v) = wiyq
for two successive vertices w; and w;y;. Then part (i) of proposition 7
applied to w; and w;,, finishes the proof.

For (ii) assume 0 (u) N0, (u) # @ for every child u. By part (i), one sees that
once 0 (u) and 0, (u) intersect, they coincide on all of the surrounding layers,
and hence on layer 1. By successive application of part (i) of proposition 7

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 45

on all neighboring children and we see that the first childs left boundary
and the last childs right boundary, and hence v’s left and right boundaries
intersect on layer 1, showing that the exterior face consists of a single edge,
contradicting the looplessness of G.

We show (iii) by induction on the depth of recursion in definition 2.7. For its
finiteness, we refer to [5]. The assertion is clearly true if v is a level 1 leaf. If
v is alevel 4 > 1 leaf with N (v) = 0 it follows from part (i) of proposition 8.
Assume now the assertion holds for every recursive occurrence of sl in the
definition of sl (v).

Let v = (z,y) be the vertex of a face with no enclosed component and
let vy,...,v; be its children. By item (%) of proposition 7 the boundaries
of two succeeding vertices v; and v;4; coincide. Using this fact with the
hypothesis, the union U;:l sl (v;) is the set of vertices contained within the
region cut out by 0 (v1) U 0, (v¢), the edges corresponding to vy, ..., v; and
the edges of the exterior face contained in the sector. The face of v con-
tains no component, thus adding the edge (z,y) — if x # y — closes the path
formed by wvy,...,v; and yields a new boundary given by the embeddings
of 0 (v1), O (v¢) and (z,y). The left boundariy of v; and the right boundary
of v; correspond with the respective ones of v by item (i) of proposition 7,
whence we obtain what we claimed.

If v is the vertex of a face with enclosed component H, we simply applying
induction hypothesis to u = root 7y and use item (3v) of proposition 7.
Finally, if v is a level ¢ leaf we obtain [, ¢ (,) sl (u) as the set of nodes con-
tained in the region bounded by the edges corresponding to vertices in N (v)
and O A (v) and 0, A, (v) arguing as in the first case. By definition, 9 (v)
and 0, (v) are prolongations & A; (v) and 9; A, (v). This finishes our proof.

The proofs for (iv) and (v) can be found in [5], deduced by (iii) or proven in
the same way as (ii1).

For (vi) observe that due to the planarity of G and the definition of J; and
0, along the triangulation, no edge crosses a slice’s boundary. This fact,
together with (74i), implies the assertion. O

46 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.2.3 Slice subgraphs and separators

In this chapter we show how the recursive definition of slices can be in-
terpreted as a consequent decomposition of an r—outerplane graph G us-
ing separators. While definition 2.7 helps with the algorithmic details, the
separator-based viewpoint provides a sound theoretical basis for a problem-
independent analysis of both Alber’s and Baker’s approaches.

While decomposing the graph into trivial subgraphs we define the problem
dependent slice subgraphs G, C G [sl (v)] for every vertex v € V(7q).

Assume that there is a problem-dependent rule that, for every instance G =
(V, E) and every separation (V1,S,V3) of G, determines the corresponding
fragments G and G (see section 1.2.3).

In practise, only two cases will be of importance. The first is the case that
both fragments contain all of the common node set’s edges, that is, G; =
G[V;US] for i = 1,2. The second is the case that every edge is contained
in exactly one of the fragments, i.e., G; = G[V; U S| and Gy = G [V U S|\
E(G9)).

The root: If v is the root vertex of the level 1 component, define G, = G.

Note that this definition is sound, because from part (vi) of proposition 8 it
follows that sl (v) = V(G).

Face vertices: Suppose now that v = (z,y) is a level i face vertex and we
are given G,. If x # y, use separator {x,y} to obtain subgraphs G, \ (z,y)
and ({z,y},{(z,y)}). In the case of an enclosed level i + 1—component,
recursively step down to the innermost component H with v = root (7x).
Let uq,...u; be the children of u.

The straightforward approach would now be to successively separate the
children’s slices from the given graph using their boundaries as separators
(see part (vi) of prop. 8).

To obtain a better running time, however, it will turn out to be useful to
split the graph in such a way that a children’s slice can be separated by
either 0, or 0, instead of both. To obtain this we need to “cut open” the
circle formed by H and the enclosing components. Observe that this might
fail if we cut out a degenerated slice, for the remaining fragment’s node set
remains unchanged.

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 47

G

Br(ur) N B ()

T .

Figure 2.5: decomposition of the slice subgraph of a face vertex

Consequently, pick j with 9, (u;)N0; (u;) = 0. Note that by part (i) of propo-
sition 8 such a j always exists. Define G, as the fragment of G, \ (z,y) with
node set sl (u;) using separator & (u;) U 0; (u;). Let G¢ be the remaining
fragment. By the choice of j one easily sees that the node set & (u1) N Oy (uy)
is a separator, separating G°¢ into fragments G and Gy with sl (ux) C Gy
fork=1,...,j—1landsl(uy) CGofork=j+1,...,t.

Use the set 0, (u;) as a separator of G§. Take the fragment with node
set sl(uy) as definition of the slice subgraph G,,. Repeat this process with
the respective remaining fragments for £ = 2,...,j — 1. Apply the same
procedure for k = 5+ 1,...,t on G5. We thus obtain the slice subgraphs for
every of u’s children. The first steps of this procedure are depicted in 2.5.

Leaves: Suppose v = (z,y) is a level 4 > 1 leaf and N (v) # () and we are
given its slice subgraph G,.

Firstly, let N (v) = {wy,...,ws} # @ with w; = (z;,2i41). Interpreting
rule (S2) as decomposition via small separators is more sophisticated. Fol-

48 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

Figure 2.6: a subgraph G, of a level 7 > 1 leaf v with N (v) # ()

lowing the proof of (i) in proposition 8, the natural approach would be to
use the node set S = {z; : 1 < i < t+ 1} as a separator and decompose
the thus obtained fragment corresponding to (J,,¢ () sl (w) in the above de-
scribed way. Observe however that this approach is doomed to fail, for there
is no size bound on S. (For the necessity of such bounds, see chapter 2.5.2)
The solution comes from the planarity assumption. The essential steps of the
process described below are depicted in figures 2.6 and 2.7. First, separate G,
into G, \ (z,y) and (x,y) using the separator {z,y}. This corresponds to
the dashed line labeled by 1 in figure 2.7. One easily sees that by planarity
there can be at most one level 7 — 1 node z that is connected to both z
and y. Let p be such that z = 2, holds. If there is no such j, let p be such
that w, = A, (v).

Starting with j = t and Hy, , = G,\(=,y), we reiterate the following process
for all w; € N (v) with j > p in descending order: use the set 9 (w;) U {y}
as a separator of HS w41 1O obtain fragments H,,, and H The first step cor-
responds to the separatlon labeled by 2 in figure 2.7.

In an intermediate step we use the separator d; (w,) to obtain the fragments
H,, and Hy, .

Repeat this process with w; € N (v) for every j = p—1,...2 in decending
order, now using the separator 0; (v) U{z} of the respective remaining graph
fragments .

Observe that in this way we obtain graph fragments H,, for every w € N (v).
To finally obtain the slice subgraphs G,, from the fragments H,, we do the

2.2. DECOMPOSING R-OUTERPLANAR GRAPHS 49

Figure 2.7: decomposing G,

following: for every w = (a,b) € N (v) we use the separator {a, b} to obtain
the slice subgraphs G,, and fragments with node set {z, a, b} or {y, a, b}, re-

spectively. This step corresponds to the dashed line labeled by 3 in figure 2.7.

Finally, let v be a level i > 1 leaf with A (v) = () and let G, be the cor-
responding graph fragment. By point (i) of proposition 8 we can assume
O (v)Uo: (v) ={z,y,xi—1,...,21} where z; isalevel jnode for 1 < j <i—1.

Starting with separator x;_; we successively decompose G, into fragments
with node sets {z,y, z;_1}, {zi_1,Tio}, ..., {z2, 21}

Remark 2.2.3. The above process describes the successive deconstruction

of an r—outerplanar graph G into subgraphs with either 2 or 3 nodes, using
separators given by slice boundaries.

Now we are done: firstly we a given planar graph into fragments of bounded
outerplanarity, then we showed how to decompose each such fragment into

trivial subgraphs. In the next chapter we show how this deconstruction can
be utilized.

50 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS
2.3 Problems and subproblems

In the this section we show how to utilize the separator-based deconstruction.
Suppose we are dealing with an optimization problem II on graphs. Our aim
is to build optimal solutions for an instance G' from optimal solutions of II on
subgraphs of G. This can be done by using dynamic programming techniques.

The applicability of dynamic programming techniques to optimization prob-
lems strongly depends on the relationship between solutions of the problem II
and its subproblems. The required property is the so-called optimal substruc-
ture property, the characteristic that an optimal solution of the problem II
contains within it optimal solutions to the subproblems (see e.g. [9]).

In our case, the subproblems will be solutions of the original problem II
on subgraphs of the original instance G. Thus, for applying dynamic pro-
gramming techniques it is necessary to investigate the relationship between
solutions of II on G' and those on G’s fragments obtained by separation.

In 2.3.1 we give an example of the difficulties that occur when approaching
this problem the naive way. Paragraph 2.3.2 provides a workaround to this
problem, together with a formalization of the concept of optimal substructure
in the context of graph optimization problems. Finally, 2.3.3 is concerned
with deducing consequences that will help us to design and analyze algo-
rithms for attacking those problems.

Note by the way that the considerations in this section are in no way re-
stricted to planar graphs.

2.3.1 Arising difficulties

Let II be an optimization problem on graphs. Suppose G is an instance
and (G, G4 are fragments of G' obtained by separation. A simple but never-
theless important observation is the following.

e the union of solutions of IT on G; and G5 does not necessarily form a
solution of IT on G.

e cuts of solutions of IT on G with G; for i = 1, 2 do not necessarily induce
solutions of II on Gj.

2.3. PROBLEMS AND SUBPROBLEMS o1

Figure 2.8: unions of INDEPENDENT SETSs cease to be independent

Figure 2.9: cuts of EDGE DOMINATING SETs cease to be dominating

For point (i) consider the graph sketched in figure 2.8. The shaded vertices
form MAxXiMUM INDEPENDENT SETS on the graph fragments, but their
union does not yield an independent set.

Item (ii) is best illustrated by EDGE DOMINATING SET on the graphs of
figure 2.9. The edges sketched with filled lines belong to the dominating set,
the dashed edges do not. The intersection of the dominating set with the
fragment on the right does not conserve the required property.

From the first example we learn that not any two optimal subsolutions can
be combined to give a feasible solution. The second example shows that our
problem does apparently not have the optimal substructure property, for the
“subsolutions” are not even solutions of the problem on the smaller instances.

Another important observation is that for problems such as INDEPENDENT
SET or EDGE DOMINATING SET, cuts of solutions with fragments only lo-
cally cease to look like solutions — “close” to the separating nodes. The
inconsistency of unions of solutions also seems to be a local phenomenon
with the regarded problems.

We handle these problems by characterizing the “boundary behaviour” of the
subsolutions, with the boundary being the common nodes of the fragments
— the separator. We will furthermore define a notion of “compatibility” that
helps us decide whether two subsolutions fit together on the common nodes.

52 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.3.2 Dissectable problems
2.3.2.1 Constrained problems

In this section we deal exclusively with graph optimization problems II =
(T, Si, vir). By this we mean optimization problems in the sense of defi-
nition 1.2, where every instance I € Zp is a finite graph and where every
feasible solution S € Sy([) is a subgraph of 1.

By interpreting a node set as a graph with empty edge set and by regard-
ing an edge set as an edge-induced subgraph, the class of graph optimization
problems contains all of the N"P—complete optimization problems mentioned
in this text.

Our first aim, given a graph optimization problem II, is to construct a deriva-
tive II, that has the desired optimal substructure property.

A constrained version I, of a graph optimization problem II is an opti-

mization problem whose instances are of the form (G,Wi,...,W,) for a
constant d € N with G = (V,FE) € Iy and W; C V for i = 1,...,d. We
call {Wy,..., Wy} the set of constraints on G. As for the unconstrained ver-

sion, we require S C G for every S € Sy, (G, Wy, ...,W,). Furthermore we
require that Sp, (G, 0, ...,0) = Su(G) holds and that v, and vy coincide on
that space.

With the connection of vy, and vy, II. can be seen as an extention of II.
Membership of a node v in one of the sets Wi, ..., W, will enforce a certain
behaviour of every solution S € Sp, (G, Wi, ..., Wy) on v. When there are no
constraints, we obtain solutions of the original problem II. We will therefore
drop the subscript ¢ when the setting is clear from the context.

A simple example is CONSTRAINED INDEPENDENT SET:

VICVisaCIS :&Vo,uw eV : (v,w)¢E
and W1 Q V’ and WgﬂV'z(Z).

where we use |V’| as the objective function.

Every V' € Scrs(G, Wi, Ws) is forced to contain the set Wi, and have an
empty intersection with Ws. An optimal solution is therefore an independent
set with maximum cardinality under the opposed constraints.

An intuitive way of describing a set of constraints on a graph G = (V, E) is

2.3. PROBLEMS AND SUBPROBLEMS 93

by coloring its nodes. Name C' = {1,...,d} the set of colors of a constrained
problem and call a mapping of the form x : U — C with U C V a coloring.

It is clear that an arbitrary family of colorings x; : U; — C with j =1,...,¢
defines a set of constraints by W, := U;Zl x;'(i) for i = 1,...,d. On the
other hand, it is easy to see that every set of constraints {W7,..., Wy} can
be described by a — not necessarily unique — family of colorings. However,
note that sets of pairwise disjoint constraints and single colorings are in 1 —1
correspondence by the above equations.

2.3.2.2 Resolving Constraints

Next we provide a concept that allows us to characterize the constraints of ev-
ery instance by only one coloring. For a given set of constraints {7y, ... Wy},
we need to find a family of pairwise disjoint constraints {Uy, . .., Uy} such that
the corresponding spaces of solutions Sy (G, W1, ... Wy) and Sy (G, Uy, ... Uy)
coincide. To obtain such a disjoint family we will define a rule to successively
resolve multiple constraints on every node until we end up with a disjoint
partition.

Note however, that non-disjoint constraints allow inconsistent assignments
to one node — for example, a node can at the same time be required to be
in the INDEPENDENT SET and not be a member of it. In order to be able
to resolve these kinds of constraints, we need to extend our color set by an
“illegal value” x. Any coloring that maps a node to x will also be named .

Let C' = CU{x} and let - : C" x C" — C’ be an associative and commutative
mapping with the properties (i,7) +— ¢ and (x,i) — x for every i € C".
Call such a mapping a resolving rule. This mapping can be extended to a
multiplication of colorings in a natural way: let G = (V| E) be a graph and
Vi, Vo C V. For colorings x1 : Vi — C' and x5 : Vo — C" we define x; - x2 by

x1(v) ifveVi\Vy
(X1 x2)(v) == { x2(v) ifvelh\W
x1(v) - xo(v) ifveVinl,

Note that the extension of - to colorings is also both commutative and asso-

o4 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

ciative and that the equation

Xiv, " Xlv, = X (2.2)

holds for every coloring x with domain V; U V5, that is, there is no conflict
to be resolved if a node is assigned the same color by two colorings.

Definition 2.8. We say that a constrained graph optimization problem II
with color set C is resolvable, if there is a resolving rule - : C' x C' — (',
such that its extension to colorings fulfils the equation

Su(G,x7' M UxZ 1), ., xi () U Xz (d) = Su(G, x (1), ..., x'(d))

for every graph G and every pair of colorings x1, xo with x = x1 - x2 where
we set Sp(G, x 1(1),...,x 1 (d)) := 0 if x = *.

A resolving rule for CONSTRAINED INDEPENDENT SET is given by the map-
ping - induced by - : {1,2} + . It is clear that CIS is resolvable with this
rule.

As already mentioned, the aim behind this multiplication of mappings is to
state an order independent way of obtaining a disjoint family of constraints.
In the context of mappings, however, it can be formalized more easily. The
concept of overlaying colors may serve as a model. With the above con-
siderations, it is clear that every instance of a resolvable constrained graph
optimization can be entirely described by a pair (G, x) consisting of a graph
G and a coloring y.

We are now ready to define the notion of dissectability:

2.3. PROBLEMS AND SUBPROBLEMS 95

2.3.2.3 Dissectable Problems

Let II be a resolvable constrained optimization problem on graphs and let C =
{1, ...,d} be the corresponding set of colors.

Definition 2.9. We say that II is dissectable, if there is a permutation ®
of C so that for every instance (G,1) and every separation (V3,S,V3) of G
we can find fragments GG; and G5 so that the following conditions hold:

(i) For every o in Sp(G,®) we find a coloring x : S — C such that
on Gl € SH(Gl,’(/)[GI . X) and o N GQ € SH(G27'¢J[G2 . (DX)

(i1) For every coloring x : S — C there is a constant c¢(x) such that for
every o1 € Si(G1, 1 - x) and for every oy € Sp(Ga, ¥y - Px) we have
o1 Uog € Si(G, 11 - 19), and the equation

vii(o1 Uog) = vp(oy) + vn(oz) — ¢(x)

holds.

The coloring x characterizes the boundary behaviour of the solutions, and
the permutation ® models the idea of compatibility. In this light, item (i)
requires that the union of subsolutions with compatible boundary behaviour
results in a feasible solution on the union of the subgraphs. In addition to
this, item (%) requires that restrictions of solutions are subsolutions, a fact
closely related to the optimal substructure property.

2.3.2.4 Some examples

In this section we give two examples of dissectable problems. More can be
found in chapter 3

Observe that, in the case Sp(G,) = 0, item (3) of definition 2.9 is vacuously
true. The same holds for part (7i) in a case where Sp(G1,¢; - x) = 0 or
Su(Ga, e - ®x) = . When examining our examples, we shall therefore
always assume non-empty spaces of solutions.

96 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

Independent Set: A simple but important example is CONSTRAINED IN-
DEPENDENT SET. We have already given the definition and observed its
resolvability. What remains is to examine whether it fulfils definition 2.9.

Let G = (V,E) be a graph, (V1,S5,V;) a separation. The fragments cor-
responding to the separation are defined as G; = G[V;US] and Gy =
GV, US].

Now for points (3) and (%) of definition 2.9. Firstly, we set ® = id. Let (G,)

be an instance, V' a solution and (V7, S, V) a separation. With x : S — {1, 2}
defined as

x(v) =

point () is clearly fulfilled.

For part (i) let V! € Su(Gi1,v: - x) and Vi € Su(Ga, s - x). Obviously
ViUV, € Su(G, 1 - 1p9) holds, for no edge joins nodes in V5 and V5 and
both constrained independent sets coincide on the common nodes due to
the restriction given by x. With the definition of ¢(x) = |x !(1)| we avoid

counting these nodes twice. Condition (i) of 2.9 is therefore also fulfilled
by CIS.

1 ifoeV!
2 otherwise

Edge Dominating Set: A more complicated example is EDGE Dowm-
INATING SET. This problem differs from the preceding one, for it is an
optimization problem on edges.

We state the constrained version using three node predicates - W, for “must
be adjacent to e € E' 7, W, for “is adjacent to a dominating edge from
somewhere else” and Wj for neither of both. Let G = (V, E) be a graph.

E'CFEisa CEDS :&Vee E:(e€ E'
or d¢’ € E' : e is adjacent to €
or Jv € W, : e is adjacent to v)
and Vo € Wy \ Wy : 3¢’ € E' : ¢ adjacent to v.

In the case W, = Wy = W5 = () we obtain the formulation of EDGE DoMI-
NATING SET. The constraints are resolvable: map any pair containing 2 and

2.3. PROBLEMS AND SUBPROBLEMS o7

not x to 2, assign 1 to the pair (1, 3) and define the remaining cases according
to the requirements for - on page 53.

Let G = (V,E) be a graph, (V4,S5,V;) a separation. The fragments cor-
responding to the separation are defined as G; = G[V1US] and Gy =
G[VoUS]\ E(G[S]). In fact, any disjoint partition of the edges in G [S]
yields suitable graph fragments.

Define & = 75, the transposition that swaps 1 and 2. Let (G,%) be an
instance, E' a solution and (V7,S,V3) a separation. Define x : S — C as

1 if v is adjacent to e € E' NGy or v € ¥~1(2)
x(v) =<2 ifvisadjacent toe € E'NGyor v e (1)

3 otherwise

Note that x is not well-defined, for the first two cases might occur simultane-
ously. In this situation, arbitrarily choose one of the two possible definitions.

Observe that the only edges to be examined for item (i) of definition 2.9 are
the ones adjacent to nodes in S. Let v € S and let e be an edge in G; with e
adjacent to v. If v is colored with 2 by % or if v is adjacent to ¢ € FE’,
the definitions of x and - assure that either ¢’ in F(G4) or that v is colored
by 2 in Gy. Thus the CEDS-condition is fulfilled for e in (G1,%,, - x). If
neither v € x7'(2) nor v adjacent to ¢’ € E’, e must be dominated via the
other adjacent node, for E' is a CEDS in (G, ¢) by assumption. We see that
E'N Gy is a CEDS in Gi (¢4, - X)-

Item (7i) is also easy to see. Let E| € Sp(Gi,¢1-x) and F} € Sp(Ge, 1o-Px).
We have to examine whether Ff U E), € Sy(G, 1 - 1) holds. The only edges
in E where the CEDS-condition could be violated are the ones adjacent to
nodes v € S with x(v) = 2 or ®x(v) = 2. We have ® = 75, and so it is
ensured by - that v is either adjacent to e € E{ U Ej or in (11 - 1) 1(2).
We conclude that E] U EY, € Su(G, ;- 1) holds. The edge sets F(G;) and
E(G9) are disjoint, we consequently define ¢(x) = 0. This concludes this
example.

28 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.3.3 Optimal substructure and dynamic programming

In this chapter we examine why the the structure of dissectable problems is
suitable for an algorithmic approach using dynamic programming techniques.

The key to the upcoming algorithm and the corresponding correctness consid-
erations is the following lemma. Its first part states that dissectable problems
have the optimal substructure property. This means that any optimal solution
contains within it optimal solutions to subproblems. From the second part
we can easily derive a recipe for an algorithm using dynamic programming
techniques.

Lemma 2.3. Let II be a dissectable constrained graph optimization problem
with color set C, let G be a graph, (V1,S,Vs) a separation and G1,Go the
corresponding graph fragments.

(i) Let o € Su(G,1)) be optimal and choose x as in (i) of definition 2.9.
Then o N Gy is optimal in Su(G1,%s, - X) and 0 N Gy is optimal in
SH(GQa wfgz) (PX)

(i) opt(G,¥) = opt (opt(G1,¥ye, - X) + 0pt(G1, % 16, Bx) — (X))

x:S—C

Proof. Without loss of generality we assume Il is a minimization problem.
Assume first that all spaces of solutions are non-empty. For (i) assume that
for example o N G; is not minimal. Then there is ¢’ € SH(Gl,wrGl “X)
with v(0') < v(c N Gy). By item (ii) of definition 2.9 and equation 2.2 on
page 54 we have o' U (0 N G2) € Sn(G,) with the value v(c’' U (6 N Gq)) =
v(o") + v(c NGy) —clx) < vieNGy) +v(eNGy) —c(x) = v(o). This
contradicts ¢’s minimality.

To show part (i), for a given x we choose optimal oy € Su(Gy, %, - x) and
09 € Su(G2, Y1, - Px). According to definition 2.9, 01 Uoy € Sp(G, 1) holds,
with (o7 U o) = v(01) + v(02) — ¢(x). With this we can easily see that

opt(G, 1) < opt_ (0pt(G1, Y16, - X) + 0pt(Ga, Yy, - BX) —c(x)) (2:3)
x:S—

On the other hand, let 0 € Sp(G, 1) be optimal. Because of definition 2.9, we
find a coloring x with cNG1 € Su(G1, Y1, -x) and oNGy € Su(Ga, Py, - PX)

2.3. PROBLEMS AND SUBPROBLEMS 99

as well as opt(G,) = v(cNG1) +v(0NG2) —c(x). With the help of part (3)
of lemma 2.3, this is transformed to

Opt(Ga 1/}) = Opt(Gla wfgl : X) + Opt(GQa 1/1[02 : (DX) - C(X)
Taking the minimum over all colorings y, we obtain

opt(G,) > opt_ (0pt(G, Yrg, - X) + 0Pt(Ga, ¥ -1, Bx) — (X)) (24)
x:S—

Combining equations 2.3 and 2.4 we obtain the desired equation.

In case Si(G, 1) = () we define opt(G, 1)) = co. With considerations similar
to the above we see that the equations still hold.

O

60 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.4 The algorithms

In this section we give the pseudocode to the algorithms of Baker and Alber.
In fact, we present modified versions of the original works, adapted to suit
our unified approach. However, the core idea of TABLE and its submethods
were first presented in [5], whereas the method DECIDE is strongly inspired
by the work in [4].

First, we give an overview of how we intend to piece together the presented
concepts — decomposition of an instance (G, k) into O(v/k)-outerplanar sub-
graphs, further separation into trivial subgraphs and a decomposition-based
calculation of solutions. After that we describe the data structures and meth-
ods common to both parts. With their help, we can easily state the pseu-
docode of both algorithms in the subsequent chapter.

For the entire section, assume without loss of generality that II is a param-
eterized problem, obtained from a dissectable minimization problem with
color set C.

2.4.1 Plugging it all together

The version of Baker’s algorithm we present is general enough to easily adapt
to any dissectable problem - including proof of correctness - and to fit to-
gether with the ideas of Alber et al. On the other hand, we try to retain
some resemblance to Baker’s original work to be able to recycle used data
structures and running time analysis made in [5].

2.4.1.1 How it could be done

Section 2.2.3 and part (%) of lemma 2.3 suggest the following approach: for
subgraphs H C G with distinguished node set U C V(H) we use tables with
entries labeled by colorings x : U — C. Each entry contains the size of an
optimal solution of II on H under the constraint y. Starting with tables for
trivial fragments as in remark 2.2.3 on page 49, one builds up tables for unions
of slice subgraphs, ending up with a table for every O(v'k)—outerplanar
fragment. Determining the value of optimal solutions on unions is achieved
by iterating over all colorings of the separating vertices following part (i) of

2.4. THE ALGORITHMS 61

lemma 2.3. The number of colorings defined on a node set of size r is given
by |C|" — explaining why small separators are worthwile to consider.

Having constructed tables containing solutions on the O(v/k)— outerplanar
fragments for all possible constraints on the separators obtained BALANCED
SEPARATION, we continue this merging process until we end up with a table
for the entire graph. This is the straightforward approach suggested by the
theory developed above.

In practice, as already mentioned, we use a slightly different method.

2.4.1.2 What we do

To be able to adapt some of the data structures and running time analysis
from [5], we give a modification of the original recursive algorithm.

The significant difference is that Baker’s original algorithm only treats the
case of unconstrained problems. Applied to a graph H, it consequently re-
turns a single number opt(H) — instead of the desired table with values
opt(H, 1)) for every possible coloring v of a distinguished node set.

To obtain a table with values opt(H, 1), we do the following: when Baker’s
algorithm is called, it is given an additional argument — the coloring ¢. The
coloring v or, more precisely, its restriction to the respective subgraph, is
handed down the recursion. When the recursion ends, that is, when the
algorithm CREATE builds a table for a trivial subgraph H' = (V', E'), we
do in fact return a table whose entries contain opt(H’, x/; ,). The entries
are labeled by the coloring x. As we will see, a call to the thus modified
algorithm yields a single number, namely opt(H,). In order to build up
our table, all we have to do is to apply the algorithm for every coloring .

For simplicity of notation in the pseudocode, however, we make the coloring 1)
a global variable instead of handing it down through the entire recursion.

2.4.2 Basic Tools
2.4.2.1 The Tables

As data structures we use tables 7" labeled by colorings x : W — C' for some
node set W C V. We call the node set W the signature sig (T') = W of the

62 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

table T. Observe that the number of entries T'(x) is given by |C|"".

For reasons of convenience, we define a table with signature () to be a numeric
variable.

2.4.2.2 Merge

The key method is named MERGE. It combines optimal solutions on graph
fragments to optimal solutions on the union graph. The algorithm — and its
correctness — are direct consequences of lemma, 2.3.

The input arguments are tables 7} and 75, together with node sets S and V5.
The tables T} and T3 are intended to contain optimal solutions on fragments
that are separated by the set S. The set V3 takes the place of the signature
of the table to be constructed. With V; = sig(T;) for i = 1,2 we consequently
require V1 NV, =S5 and SU V3 = V4 UV, as preconditions for MERGE.

MERGE(Ty, Ty, S, V3)

1 Let 75 be an empty table with signatureVs
2 Vi < sig(Th), Vs < sig(Ta)
3 forally:V3—C

4 do m ¢ o0

5 forall y: S —>C
6 do m + min{m, T\ (Y, - x) + To(¥p, - Px) — c(x)}
8 return 7j

Note that there is precisely one mapping x :) — C. In coherence with the
definition of tables, MERGE returns a single value in case V3 = ().

2.4.2.3 Create

CREATE is the method that builds up tables for the trivial fragments men-
tioned in remark 2.2.3 of section 2.2.3.

In our approach, CREATE is the only problem-dependent method. Thus
we will state it as a template and consider the details of the generic part
afterwards.

2.4. THE ALGORITHMS 63

Let V' C V be the node set of a fragment H = (V', E’) corresponding to re-
mark 2.2.3. The coloring 1 is the global variable referred to in section 2.4.1.2

CREATE(V')
1 Let T be an empty table with signature V'
for all y : V! = C

2
3 do T(x) < opt(H,x - ,,)
4 return T

It is clear that the generic part is the right hand side of the assignment in
line 3. There are two problem-specific variables:

e the edge set E'.

e the value opt(H, x - ¢rvl)

For the first point, all we have to do is to characterize the fragments cor-
responding to the trivial subgraphs. In the case of DOMINATING SET and
INDEPENDENT SET, this task is easy: The fragments are the induced sub-
graphs of the corresponding node set.

The case of EDGE DOMINATING SET must be treated differently: we need
to ensure that every edge is contained in exactly one fragment. We do this
by marking edges. Start with G = (V, E) with unmarked edge set E. Every
time CREATE is called on node set V', take as edge set E’ all unmarked
edges in EN (V' x V'). After CREATE has ended, we mark all edges in E'. It
is clear that this yields graph fragments according to the considerations on
page 56.

The second point can be handled by a brute-force approach: By remark 2.2.3,
the set V' contains at most 3 nodes, the corresponding table T’s number of
entries is therefore bounded by |C|®. We are dealing with problems in NP,
so we can calculate opt(H, x¢;,,) on H in constant time for every coloring x.

It should be emphasized that the method CREATE plays the crucial role in
the combination of the algorithms in [5] and [4]. This fact was addressed in
paragraph 2.4.1.2 and will become important in section 2.5.1.

64 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.4.2.4 Extend

Following [5], there are more problem-specific methods to implement. One
of them is the method called EXTEND. According to the separation of the
slice subgraph of a level i > 1 leaf v = (x,y) with N (v) # 0 described in
section 2.2.3 and depicted in figure 2.7, it extends the table for a level 7 — 1
vertex w € N (v) by the node z or y, respectively.

In our approach, however, the method EXTEND is not of an elementary type,
for it can be reduced to a simple application of MERGE and CREATE. It is
only introduced to provide a connection to the original work in [5] and to
improve readability of the pseudocode. It contains a call to the method
TABLE, which is being stated in the subsequent paragraph.

The method takes as arguments a vertex w = (a, b) and a node z. It returns
a table T for the fragment corresponding to the node set sl (w) U {z} with
signature 0, (w) U 0; (w) U {z}.

EXTEND(w = (a, b),)

1 T) < CREATE(a,b,)

2 T, + TABLE(w)

3 return MERGE(T1, Ty, {a,b}, 0 (w) U0, (w) U {z})

2.4.3 The pseudocode
2.4.3.1 Table - Baker’s algorithm

Baker’s algorithm is stated as the recursive method called TABLE. We present
a modified version of the original work. These differences are direct conse-
quences of our differing mode of presentation in the previous chapters and
the consequent separator-based approach.

TABLE takes as an argument a vertex v = (z,y) of the structure tree 7 and
returns a table 7" with signature 0) (v) U 0, (v) for the slice subgraph G, in
the case of v # root (7) and the value opt (G, x) in the case of v = root (7¢).
For increased readability the algorithm is split into two parts, TABLE I and
TABLE II. The first is handling the case in which v is a leaf, the second takes
care of the case in which v is a face vertex.

2.4.

THE ALGORITHMS

65

TABLE I(v = (z,y) a level ¢ leaf)

1

O~ O Ot = W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24

ifi=1
then return CREATE(v)
if N (v)=10

then let 0, (v) = {z,z—1,...,21}
T < CREATE(z,y, ;1)
for j=i—1to 2
do T < MERGE(T, CREATE(z;,%;_1),Z;,{Z, ¥, .
return T
Let wyq, ..., w; be the children of the enclosing face’s vertex
if y is adjacent to z, with(z,, z,11) € N (v)
then let p be the least such r
else let p be such that w, = A, (v)
Let ¢, s be such that w, = A; (v) and wy = A (v)
T+ EXTEND(w;, x)
for j<s+1top—1
do T + EXTEND(wj, x)
T < MERGE(T, Tp, & (w;) U {z}, 0r (w;) U O (v))
Ty < EXTEND(w,, y)
T < MERGE(T, Tp, 0 (wp), 0 (wp) U 0 (v))
for j«p+1togqg
do T +— EXTEND(wj,y)
T < MERGE(T, Ty, 0 (w;) U {y}, O (w;) U d (v))
T + MERGE(T, CREATE(z, y), {z,y}, 0 (v) U 0; (v))
return T

> Tj-1})

66

CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

TABLE II(v = (x,y) a face vertex)

1

O O O il W N

11
12
13
14
15
16
17
18
19

U4 v

while face (u) has enclosed component H

do u <« root (Tg)

Let uy, ..., u; be the children of u

Let j with 0, (u;) N 0; (uj) =0

Ty < TABLE(uj11)

fori<j+2tot

do T} < MERGE(T}, TABLE(u;), & (u;), O (wj41) U Or (us))

Ty + TABLE(u)
fori+2toj—1
do Ty + MERGE(Ts, TABLE(u;), 0 (u;), 0 (u1) U 0r (u;))
if v = root (G)

then B «+ ()

else B+ 0 (v) U0 (v)
T < MERGE(T}, T5, 0 (ut) N O; (u1), BU 0 (uj) U O (uy))
T < MERGE(T, TABLE(u;), 0 (u;) U O (u;), B)
ifx#y

then 7 + MERGE(T, CREATE(z, y), {z,y}, 0 (v) U0, (v))
return 7'

2.4.3.2 Decide - The frame

In this subsection we state the final algorithm, captured in a method called
DecIDE. After the work of the previous chapters, it can be described in
compact form. A short description of the idea was given in section 2.4.1.2.
Note that in accordance with 2.4.1.2, the variable v is visible inside the
method TABLE and its submethods, i.e. CREATE and MERGE.

Let IT be the parameterized version of a dissectable graph problem with LSP
of width w and size-factor d. Let G be a planar graph. Choose 5 > 0 as an
arbitrary trade-off-parameter.

2.4.

THE ALGORITHMS

67

DECIDE((G, k))

1

O~ O Ot il W N

11
12
13
14
15
16
17
18
19

Calculate planar embedding
Calculate layer decomposition (L;)1<i<,
S <+ BALANCED SEPARATION((L;)1<i<r, Vdk, B, w)
if S = NIL
then return no
Let § = (S)1<i<q and set Syi1 « 0
Calculate the fragments (G;)o<i<q
Construct the forests (7¢,)o<i<q
Let T be an empty table with signature S,
for all¢: S5y = C
do T'(¢) + TABLE(root (Tg,))
for i< 2tog+1
do let Ty be an empty table with signature S; ; U S;
for all¢ : (S; 1US;) = C
do Ty(v) < TABLE(root (7g,_,))
T < MERGE(T, Ty, Si_1, S;)
ifT >k
then return no
else return yes

68 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

2.5 The analysis

2.5.1 Correctness

Following the previous chapters’ work the correctness proof is quite simple.
We start with the key ingredient, the correctness proof for MERGE. Therefore
let IT be a dissectable graph optimization problem.

Lemma 2.4. Let G = (V,E) be a graph, ¥ a coloring and (V1,S5,Vs) a
separation with graph fragments G1 and Gy as in definition 2.9. Let U; C
V(G;) fori=1,2 and let U3 CV with U3 U S = U; UU,. Assume we have
tables T; with signature U; and the property that T;(x) = opt(Gi, ¥4, - x) for
every coloring x : U; — C with i =1, 2.

Then a call of MERGE(T1, T3, S,Us) returns a table T with signature Us and
T(¢) = opt(G, ¢ - ¢)
for every ¢ : Us — C.

Proof. From the pseudocode we see that

T(¢) = %ILtC(Tl(% - X) + To (o - @x) — c(x))

holds. By hypothesis this is transformed into

T(¢) = %ptc(opt(Gl’wfcl) (¢fGl) X)) + Opt(GQ’ wer) (¢sz) (I)X)) - C(X))
x:S—

Using associativity of - and lemma 2.3 this yields
T(¢) = opt(G, 14, * Dre, * Yig, * Pla,)
from which we finally obtain
T(¢) = opt(G, ¥ - 9).

using commutativity of - and equation (2.2) from page 54. O

The next lemma is credited to Baker and shows that the algorithm termi-
nates.

2.5. THE ANALYSIS 69

Lemma 2.5. Calling TABLE on root (7g) leads to exactly one recursive call
of TABLE on every other vertex of Tq.

For a proof, see [5].

The upcoming statement is a modification of another lemma by Baker and
states the correctness of the method TABLE on a graph with given coloring .

Lemma 2.6. For every coloring ¢ : V. — C, a call of TABLE on root (G)
returns the value opt(G, ¥).

Proof. The only additional assumption we make is a correct implementation
of the method CREATE. We prove by induction on the depth of recursive
calls of TABLE (observe lemma 2.5) that a call of TABLE on every vertex
v # root (G) returns a table T' with signature 0, (v) U 0; (v) and that, for
every x : 0 (v) U 0: (v) — C the equation T'(x) = opt(Gy, X - ¥¢,). holds.

One starts the induction with level 1 leaves and level 7 > 1 leaves with
N (v) = 0. The pseudocode for this case is contained in lines 1 to 8 of part (I)
of TABLE. In the first case, the assumption follows from the correctness
of CREATE, in the latter one a simple induction on 7 together with the
correctness of CREATE and MERGE does the job.

The correctness in the cases of face vertices with and without enclosed com-
ponents, as well as the case of level 7 leaves with non-empty set N (v) is a
direct result of the considerations in section 2.2.3 together with the correct-
ness of MERGE in lemma 2.4, for the composition in the pseudocode precisely
follows the mode of decomposition in section 2.2.3.

Furthermore observe that, due to proposition 7, in every case the signature
of the returned table is precisely 9 (v)U0; (v),

The case of v = root (G) is slightly different. In line 16 of part (IT) of TABLE,
MERGE is called with the empty constraint set B, it thus returns the single
value opt (G, 1) by definition and induction hypothesis. This finishes our
proof. O

Theorem 2.7. Let 11 be the parameterized version of an dissectable opti-
mization problem on planar graphs and let C' be the corresponding color set.
Furthermore assume that 11 has the LSP of width w and size factor d. Then,
for every (G, k), the algorithm DECIDE correctly decides whether it is a yes-
mnstance.

70 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

Proof. 11 has the Layerwise Separation Property. By theorem 2.1 and the
correctness of the algorithm BALANCED SEPARATION we see that, in the
case that (G, k) is a yes-instance, we obtain a v/dk — B—balanced separation.
Therefore, if S = NIL, we reject (G, k) with good reason. If S # NIL, an
induction on the variable i in the loop in line 12 shows that T" has signature S;
and that the equation T'(x) = opt(U;.:0 G}, x) holds for every x : S; = C.
This, together with S,,1 = 0, shows that 7" contains opty(G) at the end. If, in
the case of a minimization problem, this value exceeds k, we can reject (G, k).
If not, we accept it. Thus, DECIDE correctly performs its assigned task. [

2.5. THE ANALYSIS 71

2.5.2 Running time analysis

When doing a straightforward analysis of the method TABLE stated as above,
one yields a slightly worse running time than obtained in [5]. In order to get
the best possible worst case complexity, we adapt some technical details
from [5]. It will become clear that there must be different table structures
and different implementations of the method MERGE, depending on whether
it is used from DECIDE or TABLE. However, it will remain clear that the
theoretical analysis in the previous chapter still holds.

2.5.2.1 The method Table

Let G be an r—outerplanar graph and 7 its structure tree. The key to
avoid the multiplication of colorings in calls to MERGE and to ease the task
of identifying common nodes in the signatures of tables 7} and 75 can be
solved as follows: we use 2-dimensional tables for the slice of every vertex v,
every entry indexed by two colorings x; : 9 (v) — C and x, : 0, (v) — C.
Thus the table entry T'(x;, x-) will contain the value formerly saved in the
entry T(x; - xr)- In calls to MERGE from TABLE this approach has two
advantages:

e if v is a level 7 vertex, by item (%ii) of proposition 7 it is clear that every
table entry can be labeled by two elements of C* - encoded in natural
numbers. Moreover, using the fact that 0 (v) and 0, (v) contain exactly
one node from each of the layers 1,..., 1, the correlation of a node and
its value under a coloring can easily be made.

e using a table for the constants c¢(x) and - if necessary - for the map-
ping ® we can avoid multiplying mappings when merging slices of two
adjacent vertices v; and v;4; as in lines 8 and 11 in part (II) of TA-
BLE. This can be done by replacing V3 with the pair (0, (v;), 0; (vit1)),
and mappings x : V3 — C with pairs of mappings x; : 0 (v;) —
C and x, : Oy (viy1) — C. Furthermore, substitute 0, (v;) for S
and min{m, T1 (x;, x) + T2(®x, x») — ¢(x)} for the right hand side of
the assignment in line 6 of MERGE.

72 CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

This results in a O(1) time bound for line 6 of MERGE and, with ¢ = |C/,
yields O(c®") as an upper bound for such calls of MERGE on vertices of 7.
Similar considerations hold for the calls of MERGE in lines 15 and 16 of
part (IT) of TABLE. This upper bound dominates the calls to MERGE in line
16 and 18 and from the method EXTEND. For the call in line 15 observe that

(@ (u1) N Or (ur)) U (81 (v) U Ok (v)) = B (ur) U B (ur)

holds due to (i) and (iv) of proposition 7 on page 41. We consequently obtain
the same upper bound of O(c*) for this call of MERGE.

The case of degenerated slices in lines 3-8 of part (I) can be handled in
the same time bound. All calls to MERGE in the loop in line 7 consume

O(E;’;’) = O(c") time, as well as the ones in lines 17, 19, 22 and 23.

These calls dominate the overall running time. According to lemma 2.5,
TABLE is called once for every tree vertex. Together with the fact that, due
to planarity, |E| € O(|V]) holds, we get a total asymptotic running time
of ¢3"|V| for a call of TABLE on root (G). This result is in agreement with
the original work in [5]

2.5.2.2 The method Decide

Calculating a planar embedding can be done in time O(|V'|) according to [8].
Following proposition 4 in [4], the corresponding layer decomposition can
be obtained in time O(|V]) as well. As was pointed out in section 2.1.4.6,
the balanced separation can be obtained in time O(wf+v/dk|V|). Finally,the
sequence of graph fragments (G;)o<i<q, together with the tree decompositions
can be constructed in O(|V]) (see [4, 5]). Let n = |V| and n; = |V(G;)| for
1=0,...q.

The running time of the remaining operations is dominated by the loop in
line 12. The sub-loop in line 14 makes c/%-1Y%l calls to TABLE. Each of
the subsequent calls to MERGE can be done with ¢/%-11+%lp, _, this time
including the multiplication of colorings in at most n; ; steps. Note that we
do not to use 2-dimensional tables, because the structure of the separators
is not as well-defined as in the method TABLE.

2.5. THE ANALYSIS 73

This yields an upper bound of

g+1
E (CISi—l\+|Si|+30ut(G¢_1)ni_1+C|Si—1\+|5i\ni_1)

=1

for the steps for the outer loop together with lines 10 and 11. Using the
bounds on the size of the separators |S;| and the outerplanarity of the frag-
ments G; this term can be upper-bounded by

g+l
2(02\/%,3+3(\/%/,3+2w)) Zni—l < A2V AB+3Vdk/p+6w

i=1
from which we obtain an asymptotic running time of

O(ncm@“?’/ﬁ))
The O(wp+v/dkn) running time of the preprocessing steps in lines 1-8 is dom-

inated by this running time. The exponent is minimal for g = ?, yielding
an overall time complexity of

O(nczm) (2.5)

74

CHAPTER 2. SUBEXPONENTIAL FP-ALGORITHMS

Chapter 3

Strength of the presented
concepts

In the last chapters, some theoretical concepts were presented and developed.
Among them are the Layerwise Separation Property of Alber et al. [4] and
the notion of Dissectability, inspired by the the concept of weak glueability
from [4] and glueability from [3].

In this last chapter we will be concerned with investigating the strength of
the presented concepts. The touchstone for the machinery developed by now
is the number of problems that can be attacked by it. In order to gain some
first impressions, we pick a few problems and examine whether they fulfil one
or both of the above properties.

3.1 Planar Independent Set

In [4], PLANAR INDEPENDENT SET is proven to have the Layerwise Sep-
aration Property of width 1 and size factor 4. Furthermore, a 0(n24m)
algorithm is given. We have already seen that PLANAR INDEPENDENT SET
is dissectable with 2 colors. By equation (2.5) on page 73 we thus obtain the
same running time using our algorithm.

75

76 CHAPTER 3. STRENGTH OF THE PRESENTED CONCEPTS
3.2 Planar Dominating Set

Previous results: As stated in [13], DOMINATING SET is /P —complete,
even when restricted to planar graphs. In [1], PLANAR DOMINATING SET is
proven to fulfil the Layerwise Separation Property with w = 3 and d = 51.
In [4], it was pointed out that there is no known way to apply the algo-
rithm of [5] to the obtained constrained sub-problems. Alternatively, a tree-

decomposition-based algorithm is used, yielding running times of 0(n36‘/@).

To apply the above algorithm we have to examine whether there is an dis-
sectable version of DOMINATING SET

Dissectability: We state the constrained version using three node predi-
cates - Wi for “in the set”, W5 and W3 for “not in the set”. The distinction
between W, and W3 is made to specify the graph fragment a node is domi-
nated from. Let G = (V, E) be a graph.

VICVisaCDS:&VoeV\Ws:(veV ordwe V' : (v,w) € E)
and W, C V' and WoUW35)NV' =)

Together with V"’s cardinality as the objective function, this clearly yields a
constrained version of DOMINATING SET.

The constraints are resolvable: any vertex both in W; and Wy U W3 is as-
signed . Any vertex in Wy N Wj is assigned 3. The corresponding multipli-
cation clearly fulfils our requirements.

For a graph G = (V, FE) with separation (14, S, V,), the fragments are defined
as G1 =G [V1US] and G, =G [V US].

Now for points (4) and (7) of definition 2.9. We first define ® = 153 € S5, the
transposition that swaps elements 2 and 3. Together with the definition of
CDS the idea is clear: nodes that are dominated from one side of the sepa-
rator (members of W5 in that graph fragment), do not need to be dominated
from the other side (for they are members of W3).

Now let (G, %) be an instance, V' a CDS and (13, S, V3) a separation. We
define xy : § = C as

3.2. PLANAR DOMINATING SET 7

1 ifvoeV’
x(v) =<2 if there is w € V' with (v,w) € E(G;) or v € ¥ 1(3)
3 otherwise

Now for part (i) of definition 2.9. Let V' be a CDS on (G,). We have to
examine whether, for example, V' NV} fulfils this property on (G1,¢¥1¢, - X)
The condition is clearly satisfied for every vertex v € V1\ S, as its neighboring
vertices remain unchanged. Assume now that v € S. If v € V', we have v
colored by 1 in (Gy,9s, - x)- But as v € V' N Vi, the condition is clearly
fulfilled for v. If otherwise v is dominated by a vertex w € V' we have two
possibilities: In the case that w € Vi, v is still dominated by w in Gy, the
CDS - condition is obviously fulfilled. In the case that w € Vo \ V4, v is
assigned color 3 by ¥, - x, Finally, if v is colored with 3 by 1, it will still
be colored by 3 in Gy by ¥, - x-

We can conclude that V' NV; is a CDS in (G1, 94, -). The argumentation
in the case of V' NV, is similar.

For item (%) take Vi € Sp(G1,¥1-x) and Vi € Su(Ga, 19-®x). Then V/UV, €
Su(G, 1 - y) holds. To see this, first note that V/ NS = V) NS due to the
definition of - and the fact that ®(1) = 1. Secondly, observe that we only
have to examine nodes v € S. The case v € V/ U VJ is clear. Otherwise,
by definition of ® = 753, v is assigned color 2 in one of the fragments, say
for example G;. V/ is a CDS on G1, so v is either dominated by w € V/,
or assigned color 3 by ;. In the first case, v remains dominated by w
in GG, in the latter case, v is assigned color 3 by ;- 1. With the definition of
c(x) = [x7'(1)| we avoid counting of the nodes in V'US twice. Thus (%) holds
and we conclude that CONSTRAINED DOMINATIN SET is in fact dissectable.

Algorithmic consequences: Together with theorem 2.7 and equation
(2.5), we obtain an algorithm for deciding PLANAR EDGE DOMINATING
SET with running times of O(n?)ﬁm), matching the tree decomposition
based result in [4].

78 CHAPTER 3. STRENGTH OF THE PRESENTED CONCEPTS
3.3 Planar Edge Dominating Set

Previous results: In [17] it was proven that EDGE DOMINATING SET is
NP —complete, even when restricted to planar graphs with a maximum node
degree of 3. However, [5] states that there is an approximation scheme for
the planar version.

Layerwise Separation Property: Let G = (V, E) be a plane graph with
layer decomposition (L;)1<;<, and k € N. Assume E’ is an EDGE DOMINAT-
ING SET in G with |E'| < k. Define S; C L; U L;, 1 as the set of all endpoints
of edges in E' for i = 1,...r. Then S; clearly separates layers L; 1 and L; o,
for every edge going from layer ¢ to layer ¢ — 1 has at least one endpoint in S;.
We conclude that EDS has the LSP of width 2. The size factor is d = 4, for
each of the two endpoints of at most k edges is contained in two of separating
sets.

Resulting algorithm: On page 56 it was already proven that EDGE Dowm-
INATING SET is dissectable with 3 colors, thus according to theorem 2.7 we
obtain a parameterized algorithm that correctly decides the problem. By
equation (2.5) we see that its running time is bounded by O(n3*Ve). As far
as we know, this is the best subexponential worst case bound for a parame-
terized algorithm for PLANAR EDGE DOMINATING SET.

3.4 Planar Minimum Maximal Matching

A matching on a graph G is an independent set of edges, that is, a set of edges
such that no two are adjacent. A maximal matching is a matching where
no edges can be added without losing this property. A minimum maximal
matching is a maximal matching with minimum cardinality or, equivalently,
a minimum independent edge dominating set.

As is pointed out in [17], the cardinality of a minimum maximal matching
on GG equals the size of a minimum edge dominating set, therefore the algo-
rithm above also helps to decide the problem PLANAR MINIMUM MAXIMAL
MATCHING.

3.5. PLANAR S — T—PARTITION 79

3.5 Planar s — t—Partition

In [7], an algorithm for finding optimal s — t—partitions in time O(r*n32%")
on the class of r—outerplanar graphs is given. In fact, a weaker precon-
dition than r—outerplanarity, namely r—outerplane-separability is already
sufficient. Its ideas are based on the algorithm in [5], so the problem seems
to be a candidate for an approach using the techniques presented in this
work. However, as the upcoming proposition shows, s — t—PARTITION does
not have the Layerwise Separation Property.

Proposition 9. s — t—PARTITION does not have the Layerwise Separation
Property for any s € N.

Proof. We prove this assertion by showing that for every s € N, for every w €
N and for every d € N there is a yes-instance (G, k) and an embedding ¢ of
G, such that for every separation of layers (S;)i<j<, with S; C Uf;;fj*l L,

for j =1,...,r we have
D 1S;] > dk
Jj=1

Choose s,w,d € N arbitrarily and consider the (square) grid graph G,
sketched in figure 3.5. Observe that (G,, k) is a yes-instance for every k
with s + 1 < k£ < p by splitting the node set along to the sketched line.
Let (L;)1<i<r be alayer decomposition of G,. One can prove by induction on
r —i that the equation |L;| = 4+8(r —i) holds for i = 1,...,r. Furthermore,
it is easy to see that due to the structure of the graph, any separation S; of
layers L; ;1 and L;,,, with 1 < i <r — w has at least size |L;y,|. Together,
this yields a lower bound for the size of any layerwise separation of width w
of G):

SIS > L] =) 4+8(r—i—w)
=1 =2 =2

The right hand side is lower bounded by r2 — r(3 + 2w). By increasing p we
increase 7, and so, for fixed k,w,d and s we obtain yes-instances (G,, k) in
which any layerwise separation (S;)i<i<, violates the size bound > _, [S;| <
dk, finishing this proof.

O

80 CHAPTER 3. STRENGTH OF THE PRESENTED CONCEPTS

0% 1

Figure 3.1: grid graphs G, allow no small layerwise separation

Vs

Consequently, the concept of layerwise separations is not an adequate tool for
extending the above mentioned result for s—¢t—PARTITION on r—outerplanar
graphs to the class of general planar graphs.

3.6 Treewidth and fugitive search games

Another candidate for applying the presented concepts are fugitive search
games on planar graphs (see e.g. [15]). General and, in retrospect, trivial
considerations show that this approach must fail, at least in the case of inert
fugitives with unbounded speed.

Due to the lack of connections to our subject, we avoid going into the details
of search games and only use them an example to sketch a situation in which
an attempt to prove the layerwise separation property is doomed to fail.

As already mentioned in section 1.3.2,the treewidth tw of a planar graph G
is in relation with its outerplanarity by the following equation:

tw(G) < 3out(G) — 1

Using theorem 2.1, this result is extended in [4], yielding the following theo-
rem:

Theorem 3.1. Let (G, ¢) be a plane graph that admits a layerwise separation
of width w and size dk. Then, we have tw(G) < 2v/6dk + (3w — 1)

3.6. TREEWIDTH AND FUGITIVE SEARCH GAMES 81

For a proof, see [4].

Without definining what a fugitive search game or the search number precisely
are, we state a theorem due to [15].

Theorem 3.2. For an inert fugitive with unbounded speed, the monotone
search number is equal to its treewidth plus 1.

Assume that PLANAR SEARCH NUMBER, i.e. the decision problem that asks
whether a planar graph G has search number less or equal to &, has the LSP
of width w and size-factor d for some w,d € N. Chosing a big enough &, any
graph G with 2v/6dk+ (3w —1)+1 < tw(G) < k implies a contradiction: the
Layerwise Separation Property implies that G is a no— instance, for it does
not allow for a layerwise separation according to theorem 3.1. On the other
hand, theorem 3.2 implies that we are dealing with a yes-instance. Thus,
PLANAR SEARCH NUMBER cannot have the Layerwise Separation Property.

It is clear that this situation occurs with all problems that can be character-
ized by the concept of treewidth in the above way.

82 CHAPTER 3. STRENGTH OF THE PRESENTED CONCEPTS

Chapter 4

Conclusions and outlook

We presented a novel approach for developing fixed parameter algorithms
for planar graph problems developed by Alber et. al. in [4]. In contrast to
most of the existing fixed parameter results for NP —complete problems, it
yields algorithms with running times that are subexponential in the param-
eter’s size. It relies on an algorithm that solves the concerning problem on
subgraphs with bounded outerplanarity. For this task, we chose to use the
well-known algorithm by Baker [5].

In adapting these algorithms to new problems, we found many similarities in
both approaches. Consequently, we tried to distill the common ideas behind
the underlying dynamic programming techniques. As a result, we defined
the concept of dissectability, a special kind of optimal substructure property.
We proved that it is a sufficient condition for the applicability of both algo-
rithm’s dynamic programming techniques. With its help, we easily derived
subexponential fixed parameter algorithms for PLANAR INDEPENDENT SET,
PLANAR DOMINATING SET and PLANAR EDGE DOMINATING SET. The re-
sult for PLANAR DOMINATING SET matches existing results, however, here
they are obtained without employing the concept of tree decompositions.
The result for EDGE DOMINATING SET states, to our knowledge, a new
worst case running time.

Furthermore, we have examined that the easy-to-prove concepts of Layerwise
Separation Property and dissectability are quite restrictive. For two exam-
ples, s — t—PARTITION and SEARCH NUMBER, we proved that they do not
have the LSP. The example of s —t—PARTITION together with typical exam-

83

84 CHAPTER 4. CONCLUSIONS AND OUTLOOK

ples of problems with the LSP suggest that this property might be restricted
to problems in which solutions are in a way “dense” subgraphs. In fact, the
LSP has to our knowledge only been proven for domination-like problems
similar to the above. The same situation seems to occur for the concept of
dissectability. Until now, the only known dissectable problems are the above
mentioned.

However, as was pointed out in [10], there are more that 200 research papers
published on solving domination-like problems on graphs, proving that we
are dealing with a class that holds great interest.

Due to the restricted scope of this work, many related subjects can only be
mentioned. We did, for example, not investigate the question of acutally
constructing solutions. We did not address the important issue of the algo-
rithms’ space consumption. An interesting question is how the concepts of
glueability, weak glueability (see [3]) and dissectability relate. Although dis-
sectability is inspired by the above, it seems to be less restrictive. Further
generalization of the results comes from [10]. Using tree decompositions, sim-
ilar subexponential results are proven for K3 ;—minor-free or K;—minor-free
graphs. In [2], first encouraging empirical results are presented. However,
the evaluated approach is based on tree decompositions and uses random
graphs with low average outerplanarity.

Bibliography

1]

[5]

(6]

7]

J. Alber, H. L. Bodlaender, H. Fernau, and R. Niedermeier. Fixed
parameter algorithms for planar dominating set and related problems.
In 7th Scandinavian Workshop on Algorithm Theory (SWAT), number
1851 in Lecture Notes in Computer Science, pages 97-110. Springer
Verlag, 2000.

J. Alber, F. Dorn, and R. Niedermeier. Empirical evaluation of a tree
decomposition based algorithm for vertex cover on planar graphs. Disc.
Appl. Math., to appear.

J. Alber, H. Fernau, and R. Niedermeier. Graph separators: a parame-
terized view. In Proceedings of the 7th Annual International Computing
and Combinatorics Conference (COCOON 2001), number 2108 in Lec-
ture Notes in Computer Science, pages 318-327. Springer Verlag, 2001.

J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity:
Exponential speed-up for planar graph problems. Technical Report TR-
01-023, Electronic Colloquium on Computational Complexity (ECCC),
2001.

B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. J. Assoc. Comput. Mach., 41(1):153-180, January 1994.

H. L. Bodlaender. A partial k—arboretum of graphs with bounded tree-
with. Th. Comp. Sci., 209:1-45, 1998.

T. N. Bui and A. Peck. Partitioning planar graphs. SIAM J. Comput.,
21(2):203-215, April 1992.

85

86

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

BIBLIOGRAPHY

N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm
for embedding planar graphs using pg-trees. J. Comput. Syst. Sci.,
30(1):54-76, 1985.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. MIT Press/McGraw-Hill, 2001.

E. Demaine, M. Hajiaghayi, and D. M. Thilikos. Exponential speedup of
fixed parameter algorithms on k3,3-minor-free or k5-minor - free graphs.
Technical Report MIT-LCS-TR-838, M.I.T, 2002.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

R. G. Downey, M. R. Fellows, and U. Stege. Computational tractability:
The view from mars. Bulletin of the European Association for Theoret-
ical Computer Science, 69:73-97, 1999.

M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide
to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

A. Kanevsky. Finding all minimum-size separating vertex sets in a
graph. Networks, 23:533-541, 1993.

D. M. Thilikos N. D. Dendris, L. M. Kirousis. Fugitive-search games on
graphs and related parameters. Th. Comp. Sci., 172:233-254, 1997.

D. B. West. Introduction to Graph Theory. Prentice-Hall, 1996.

M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM
J. Appl. Math, 38(3):364-372, June 1980.

