
Detecting Timing Leaks in Hardware
Semester Thesis

Audrey Lim

WS 06/07

Supervisors:
Boris Köpf, Prof. David Basin

Abstract

Timing leakage occurs when a program’s running time depends on the program’s secret
parameters. This of course can be exploited by attackers to gain information on the se-
cret key material. One possible and straightforward countermeasure for preventing such
timing-based attacks is to ensure that the algorithm’s execution time is independent of
the secret values.
In order to detect timing leaks in clocked hardware implementations we want to make
use of the hardware description language gezel and the model checker smv, whereby a
translation from gezel to smv is needed.
In this semester thesis we implemented a compiler for translating programs written in
gezel to the input language of smv. The compiler gives us the possibility to automati-
cally analyze hardware designs for potential timing leaks.

Contents

1 Introduction 1

2 Models & Languages 3
2.1 Mealy Machine . 3
2.2 Defining Security . 4
2.3 Deciding Security . 5

2.3.1 Reduction: Product Construction 5
2.3.2 smv encoding . 6

2.4 The gezel language . 7
2.5 The smv language . 8

3 Compiler Design & Implementation 9
3.1 System Architecture . 9
3.2 Class Model . 10
3.3 Operational Description . 11

3.3.1 Analysis Phase . 11
3.3.2 Synthesis Phase . 13

4 Tests 14

5 Conclusion 18
5.1 Results . 18
5.2 Lesson learned . 18
5.3 Future Work . 18

I

Chapter 1

Introduction

RSA, the today most commonly used public key cryptographic algorithm to secure elec-
tronic data transfer, is believed to be secure. Its security is based on its considerable
mathematical strength, namely the computational infeasibility of factoring large num-
bers. Hence recovering the private key is equivalent to factoring the modulus used for
de- resp. encryption and thus requires an extraordinary amount of computer processing
power and time.

Although RSA is currently considered to be secure against direct attacks, one shouldn’t
overlook the fact that there exist other ways attackers may choose to recover secret key
material. While running a program, side channel information, e.g. the running time,
the power consumption or the electromagnetic radiation, may leak and give the attacker
information on the inner-living of the system. Such (unintended) physical leakage caused
by a naive implementation of a secure mathematical algorithm can be crucial in terms of
security. Together with the attackers’ knowhow it can be sufficient to extract the secret
parameters from cryptographic implementations.

The process of attacking a system indirectly without breaking the mathematical algorithm
itself is called side channel attack. The one we will focus on is the so-called timing attack.

Timing attacks exploit the timing variations in cryptographic operations. The amount of
time used by a cyptosystem typically differs slightly from one system run to the other.
The reason for these varing running times lays in the fact that the time needed to process
depends on the input data, and possibly on the secret key material as well. By carefully
measuring the running time of an algorithm, attackers may be able to deduce part of or
even the entire secret parameters involved in the operation.

Timing side channels are a serious threat to cryptographic algorithms and should be
avoided whenever possible. A conceivable and systematic countermeasure for preventing
such timing-based attacks is to ensure that the algorithms’ running times are independent
of the secret parameters. Therefore algorithms should be tested by running them with all
possible secret inputs in order to detect potential timing leaks in hardware.

As predicting running times of multi-purpose processors is a very difficult challenge, we
will focus on clocked hardware implementations where the used hardware description lan-
guage is gezel.

The problem of finding possible timing leaks could recently be reduced to a search prob-

1

lem on a product automaton. In order to solve this search problem, we want to make use
of the existing model checker smv and therefore need a translation from the hardware
description language gezel to the input language of the model checker smv.

Since it’s a cumbersome task to translate each to be tested gezel program into its corre-
sponding smv program by hand, a compiler which does that job would be of great help.
The goal of this semester thesis is to write a translator that takes a gezel program and
compiles it into the corresponding smv program which then can be checked for possible
timing leakage.

The structure of the remaining part of this document looks as follows.
In Chapter 2 we introduce the models and languages. We first define security by intro-
ducing equivalence relations. Furthermore we will see that our problem can be reduced to
a much simpler search problem. Afterwards we briefly describe the languages gezel and
smv. Chapter 3 will give us an insight to the design and implementation of this work.
Some tests will be listed in Chapter 4. And finally we will come to the conclusion of this
thesis in Chapter 5.

2

Chapter 2

Models & Languages

In this Chapter we first give the definition of a (deterministic) Mealy machine. We then
define two security domains and introduce equivalences that are necessary to define secure
information flow. The problem of deciding whether the information flow is secure can be
reduced to a reachability problem on a special type of product automaton. The last two
sections are dedicated to the languages, gezel and smv, which we will use to detect
whether information leakage occurs or not.

2.1 Mealy Machine

A Mealy machine is a finite state machine that produces an output for each transition,
where the output is based on the machine’s current state as well as on its input.

We will lay our focus on the determinstic case of a Mealy machine. Its formal definition
is the following:

Definition (deterministic Mealy machine). A deterministic Mealy machine is a 6-tuple
M = (S, Σ, Γ, δ, λ, s0), where

• S is a finite set of states,

• Σ is the finite input alphabet,

• Γ is the finite output alphabet,

• δ: S × Σ → S is the transition function,

• λ: S × Σ → Γ is the output function,

• and s0 ∈ S is the initial state.

We use the deterministic Mealy machine to model the hardware circuits that are synchro-
nized by a global clock signal. One transition corresponds to one clock cycle, i.e. during
each clock cycle input signals are read and output signals are generated.

3

2.2 Defining Security

A system is considered to be secure if all system runs are indistinguishable even though the
system might compute with different secret data. Vice versa, whenever the system shows
distinguishable behavior while processing different secrets, information leakage may occur.

In the following we will introduce equivalence relations between inputs, outputs and states,
respectively, in order to model to what extent an observer can distinguish system behavior.

To simplify the definition of security we will limit ourselves to a special case. We assume
two security domains, high and low. According to these two domains, each input as well
as output signal consists of a high and a low component:

• Σ = ΣH × ΣL

• Γ = ΓH × ΓL

Our definition of the terms high and low reads as follows.
We can think of each observer having a domain assigned and being only able to see
variables that are within the same domain or lower. High variables therefore are obser-
vationally not available for the low observer, considering he can only see variables in the
low domain. The high observer, however, is able to see everything (high and low).

For us, the high observer is of no interest. We will focus on the low observer.

Security means, we restrict the flow of information from the high into the low domain.
That is, we demand for two inputs with arbitrary high- but same low input-parts, the
low outputs to be indistiguishable. The high outputs, on the otherhand, are allowed to
be different since by definition they can’t be seen by the low observer anyway. Figure 2.1
visualizes the setting.

Figure 2.1: A system is secure if there is no information flow from the high into the low
domain. On the other hand, if there was such a ’red’ information flow, the low observer
may gain information on the high input by just looking at the low output which indicates
information leakage and thus an insecure system.

4

Definition (Low-Equivalence). Two inputs (resp. outputs) (h1, l1), (h2, l2) ∈ ΣH × ΣL

(resp. ΓH × ΓL) are said to be observationally equivalent iff l1 = l2.

A shorter notation for low-equivalence between two inputs (resp. outputs) x1, x2 is

x1 =L x2

where ‘=L’ denotes equivalence on the low component.

Two states are said to be observationally equivalent if whenever the system is handed
sequences of low-equivalent input it produces sequences of low-equivalent output, inde-
pendent of the high input. The high input therefore doesn’t affect the outcome of the low
part in any way. The formal definition is the following.

Definition (Observational Equivalence R). Let M = (S, Σ, Γ, δ, λ, s0) be a deterministic
Mealy machine, where Σ = ΣH × ΣL and Γ = ΓH × ΓL.
Two states s1, s2 are observationally equivalent (s1 R s2) iff ∀ l ∈ ΣL ∀ h1, h2 ∈ ΣH :
δ(s1,(h1,l)) R δ(s2,(h2,l)) ∧ λ(s1,(h1,l)) =L λ(s2,(h2,l)).

Definition (Security). Let M = (S, Σ, Γ, δ, λ, s0) be a deterministic Mealy machine. We
say that M has a secure information flow (or simply that M is secure) iff s0 R s0, where
R is the relation from the previous definition.

Given a fixed low input value, a secure system can be fed with all possible high inputs
and yet the low output will always be the same.

A more general definition of security can be found in [1].

2.3 Deciding Security

2.3.1 Reduction: Product Construction

Our next step is to apply the above defined models.

The problem of deciding whether two states are observationally equivalent can be reduced
to a reachability problem on a special type of product automaton where every trace cor-
responds to a pair of traces of the original system.

Thanks to the transitivity of the observational equivalence it suffices to analyze each indi-
vidual trace of the product automaton in order to determine whether the system is secure.

Definition (Product Automaton). Let M1 = (S1, ΣL × ΣH , Γ, δ1, λ1, s0,1) and M2 =
(S2, ΣL × ΣH , Γ, δ2, λ2, s0,2) be deterministic Mealy machines.
Then M1 ×M2 is the automaton (S1 × S2, ΣL ×ΣH ×ΣH , {0, 1}, δ′, λ′, (s01, s0,2)) where

δ′ = ((s1, s2), (l, h1, h2)) = (δ1(s1(l, h1)), δ2(s2, (l, h2))) and

λ′ = ((s1, s2), (l, h1, h2)) = 1 if λ1(s1, (l, h1)) =L λ2(s2, (l, h2))
= 0 otherwise.

5

Theorem. The product automaton reaches a falsifying state when its output function
λ′ outputs 0. Reaching a falsifying state of the product automaton indicates information
leakage and therefore an insecure system.

It is proven in [1] that deciding observational equivalence of states is equivalent to deter-
mining whether a falsyfying state can be reached in M1 ×M2.

2.3.2 smv encoding

The product autmaton can be encoded in a few lines of smv code (see Figure 2.2).

MODULE main

VAR
lo , hi1 , h i2 : array (SIZE−1) . . 0 o f boolean ;
sys1 : c i r c u i t ; sys2 : c i r c u i t ;

ASSIGN
sys1 . l o i n := l o ; sys1 . h i i n := hi1 ;
sys2 . l o i n := l o ; sys2 . h i i n := hi2 ;

SPEC !EF(! sys1 . done = sys2 . done)

Figure 2.2: Product construction in smv.

Suppose circuit is a specification of an automaton. We instantiate it twice (as sys1

and sys2) and provide both instances with the same low input lo, but different high
inputs, namely h1 and h2. In our case of detecting timing leaks, we consider the done

flags, which signal termination, to represent the low outputs.

If the program circuit doesn’t suffer timing leakage both instances’ done flags are set
to 1 simultaneously for every combination of lo, h1 and h2, and the product automaton
won’t reach a falsifying state. Conversely, if we reach a state in which one instance’s done
flag is set to 1 before the other instance terminates we have found a falsifying state of the
product automaton and as a result timing leakage.

In order to verify whether having reached a falsifing state or not, the smv product au-
tomaton evaluates a ctl (Computational Tree Logic) expression each clock tick. Our
formula to be satified, !EF(!sys1.done = sys2.done), states that there exists no path
where at some future state the done flags are set to different values.1 The system is secure
if the ctl formula is satified throughout the run of the product automaton. Whenever
we get to the point where this expression is not satisfied, we reached a falsifying state and
smv generates a counterexample in the form of a trace or sequence of states, if possible.

1EF stands for Exist and Future.

6

2.4 The gezel language

gezel is a synchronous hardware description language that allows for cycle-true descrip-
tions. Moreover, the output can be mapped to a physical implementation. Therefore
the security guarantees obtained using gezel implementations are valid as well for the
real-world hardware implementations.

A gezel program consists of modules where all modules are attached to a single, implicit
clock. A module is composed of a controller and a datapath where a controller is always
attached to a datapath and each datapath can only have one single controller.
A datapath (dp) is the place where definitions are made: port definition, register/signal
definition and instruction definition. The instructions are defined as signal flow graphs
(sfg) and each sfg collects a number of expressions.
The signal flow graphs specify only the available instructions, not the schedule. The
scheduling of the instructions is done by the controller. There are 3 types of controllers:
hardwired, sequencer and fsm. For our purpose we limit ourselves to the fsm type. The
fsm controller has two tasks to fulfill in a finite state model, namely instruction sequenc-
ing and decision making. The fsm always resides in one of its states. Switching states is
realised by state transitions where during a state transition one or more sfgs are selected
to be executed.

The following example is a simple program that takes an input parameter x and outputs
the first multiple of x greater than 100 (value stored in res) as soon as the done flag is
set to 1.

dp my dp(in x : ns (8) ; out r e s : ns (8) ; out done : ns (1)) {
reg y : ns (8) ;
s f g i n i t {y = 0 ; r e s = 0 ; done = 0 ;}
s f g s i g 0 {y = y + x ;}
s f g term { r e s = y ; done = 1 ;}

}

fsm my cont ro l l e r (my dp){
i n i t i a l s0 ;
s t a t e s1 , end ;
@s0 (i n i t) −> s1 ;
@s1 i f (y < 100) then (s i g 0) −> s1 ;

e l s e (term) −> end ;
@end (term) −> end ;

}

Figure 2.3: gezel Example.

7

2.5 The smv language

We saw that our problem of detecting timing leaks can be reduced to a search problem.
Instead of implementing a search procedure in gezel by hand, we translate the gezel
implementations to the input language of the symbolic model checker smv and use smv
to automate the search on the product automaton from definition Product Automaton.

A smv program consists of one or more modules where a module can be divided
roughly into 3 parts.

1. Declarations of the state variables (see VAR block)

2. Assignments that define the valid initial states (indicated with init())

3. Assignments that define the transition relation (indicated with next())

The subsequent example is the smv translation of the previous gezel program.

MODULE smvProg

VAR

s t a t e : { s0 , s1 , end } ;
x : array 7 . . 0 o f boolean ;
r e s : array 7 . . 0 o f boolean ;
done : array 0 . . 0 o f boolean ;
y : array 7 . . 0 o f boolean ;

ASSIGN

i n i t (s t a t e) := s0 ;
next (s t a t e) :=
case
s t a t e=s0 : s1 ;
s t a t e=s1 & y<100 : s1 ;
s t a t e=s1 & ˜(y<100) : end ;
s t a t e=end : end ;

e sac ;

next (r e s) :=
case
s t a t e=s0 : 0 ;
s t a t e=s1 & ˜(y<100) : y ;
s t a t e=end : y ;
1 : r e s ;

e sac ;

i n i t (done) := 0 ;
next (done) :=
case
s t a t e=s1 & ˜(y<100) : 1 ;
s t a t e=end : 1 ;
1 : done ;

e sac ;

next (y) :=
case
s t a t e=s0 : 0 ;
s t a t e=s1 & y<100 : y + x ;
1 : y ;

e sac ;

Figure 2.4: smv Example.

8

Chapter 3

Compiler Design & Implementation

As addressed before, the goal of this semester thesis is to build a compiler that translates
a gezel- into an smv-program for the reason mentioned earlier. This Chapter discusses
the design and implementation of the ’gezel-to-smv’ compiler. We first have a glance
at the system’s architecture. Then we take a look at the class model and the operational
description.

3.1 System Architecture

The architecture of the ’gezel-to-smv’ compiler can be subdivided into three main com-
ponents:

• Data Structure:
In order to store the information of a gezel resp. smv program we need corre-
sponding data structures. Since both languages show a linear pattern we decided
the data structures to be abstract syntax lists rather than abstract syntax trees.

• Parser:
To fill the gezel data structure, a parser for gezel programs is needed. Its job
is to take an input gezel program in plain text and store its information into the
provided abstract syntax lists.

• Transformer:
This component transforms one data structure into the other and prints the target
code.

We opted for the code to pass two data structures while going through the compiling
process. This intermediate step is done to have the translation nicely subdivided into
meaningful steps as well as to allow a more straightforward access to the information
when bulding the final smv program. An illustration of the whole procedure can be seen
in Figure 3.1.

9

Figure 3.1: Compiling process. gezel code is received as input and gets stored in a data
structure designed for gezel programs. Instead of directly producing the smv output,
the information first gets restored in a further data structure from which the smv code is
finally read and printed.

The classes needed for the first data structure are within the package gezelDatastructure,
whereas the classes used for setting up the second data structure are gathered in a package
called smvDatastructure. More information on these packages and their classes are given
in the next section.

3.2 Class Model

We chose an object-oriented approach for the realization of the compiler. For each compo-
nent discussed in the previous section, a seperate package is provided. An overview of all
packages and some of their classes is given in Figure 3.2 in form of a UML-like diagram.
Abstract classes are labeled with italic class names (Variable) whereas class names in
upright font (Transition) represent concrete classes. Arrows symbolize an inheritance re-
lationship and the lines ending in a diamond represent composition.

Figure 3.2: Class model. Shows the packages and some of their most important classes.

10

The following four paragraphs should give a rough idea of the provided packages.

parser package.
This package includes the parser and the lexer. More information on them is given in the
next section.

gezelDatastructure package.
We came to the conclusion that the structure of a gezel program is best represented by
means of lists. This arised from the fact that the gezel language consists of three major
parts, namely definitions, instructions and transitions, which all show a linear pattern.
The root class of this package is called GezelProg. It is composed of the three lists called
SymbolTable, SfgList and TransitionList. All of them are built by the parser. The SfgList
and the TransitionList are used to store the signal flow graphs (instructions) and the
transitions, respectively. By using a SymbolTable it’s a lot easier to do checks such as
wheter an identifier has been used more than once or is being used before being declared.
It stores all used identifiers declared in the program together with their ’type’ (dp, signal,
sfg, fsm, state, initial) and if needed some further information (e.g. number of bits
in case of a signal).

transformer package.
While the first data structure stores the information received by the parser, the second
data structure is set up by the transformer. The class Transformer is the only class
within this package and contains two methods. The first one takes as input a gezel data
structure and outputs the corresponding smv data structure so that an easy accessible
way to traverse and consequently build the smv program is assured. The second method
goes through the data structure built by the tranformer and prints out the smv code.

smvDatastructure package.
Similar to gezel, smv simply requires a linear data structure. An smv program can be
stored as a list of blocks where each block consists of a variable and its cases. A case
corresponds to an assignment and a condition under which it is executed. Structures like
Exp from the gezelDatastructure package are reused instead of implemented again.

3.3 Operational Description

There are 2 phases within building a compiler:

• the analysis phase which analyzes the source code (gezel program) and translates
it into a suitable data structure

• the synthesis phase which takes the gezel data structure transforms it into an smv
data structure and produces the target code (smv program)

We first discuss the analysis phase where the lexer and the parser come into play.

3.3.1 Analysis Phase

The first step of building the compiler included the construction of the lexer and the
parser. Moreover, the design of the gezel data structure had to be specified.

11

The lexer is a program that takes gezel code as its input and splits it into tokens with
certain values. These tokens are passed to the parser. The parser takes these tokens and
builds the gezel data structure according to its specified grammar.

In order to generate the lexer and the parser we made use of the tools JFlex and JavaCup.
They are the JAVA versions of Lex and Yacc which are typical lexer and parser generating
tools generating C code. Both of these tools require a grammar file as input. So in order
to build the lexer and the parser all we needed to do is to write these two grammar files.

. . .
”>>” { re turn symbol (MySymbol .RSHIFT} ;}
”ˆ” { re turn symbol (MySymbol .XOR} ;}
. . .
” i n i t i a l ” { re turn symbol (MySymbol . INITIAL } ;}
” s t a t e ” { re turn symbol (MySymbol .STATE} ;}
”@” { re turn symbol (MySymbol .AT} ;}
”−>” { re turn symbol (MySymbol .TARGET} ;}
” i f ” { re turn symbol (MySymbol . IF } ;}
”==” { re turn symbol (MySymbol .EQUAL} ;}
” then” { re turn symbol (MySymbol .THEN} ;}
” e l s e ” { re turn symbol (MySymbol .ELSE} ;}
. . .

Figure 3.3: Grammar file excerpt for generating the lexer with JFlex.

. . .
t e rmina l S t r ing ID , COMP;
te rmina l I n t eg e r NUMBER;
. . .
non te rmina l State s t a t e f r om id , s t a t e t o i d ;
non termina l VarExp lh s exp r ;
non termina l SimpleCond cond expr , cond i t i on ;
. . .
g e z e l d e s c : := datapath f smcontro l

{ : RESULT = new GezelProg (myTable , mySfgList , myTransList) ; : } ;
datapath : := DATAPATH dp id dp io LBRACE dp def RBRACE;
dp id : := ID : n

{ : STEntry sym = new STEntry (n , ”DP”) ;
myTable . i n s e r t (sym) ; : } ;

. . .

Figure 3.4: Grammar file excerpt for generating the parser with JavaCup.

The grammar file for JFlex contains the set of character sequences that may occur in the
gezel program and defines their mappings to tokens. An extract of our grammar file for
JFlex is shown in Figure 3.3.

The grammar file for JavaCup determines the structure of a gezel program. Further-
more, it specifies how the gezel data structure is set up. When a certain combination
of tokens is encountered, the java code within the corresponding braces is executed and
builds up the gezel data structure. Figure 3.4 shows an extract of our JavaCup grammar
file.

12

Having the data stored in the gezel data structure, we can move on to the so-called
synthesis phase.

3.3.2 Synthesis Phase

As mentioned before in section 3.1, we decided to have not only one, but two intermediate
representations of the data being processed. Not only does it make the compilation more
understandable, it also simplifies the process of collecting the needed data by having it
stored in an easy accessible way. The transformation from one data structure into the
other is done by the transformer.

Let’s have a look at the core transformation that has to be done.
Figures 3.5 and 3.6 show simplified excerpts of a gezel program and its corresponding
smv code, respectively. The biggest difference between gezel and smv is their descrip-
tion of an automaton. gezel describes an automaton in terms of transitions, i.e. each
transition of an automaton is declared explicitely. Line 6 in Figure 3.5 illustrates such a
transition. In smv on the other hand there is no explicit description of transitions. Instead
it models an automaton by assigning each existing variable in the program a value every
clock cycle. The values assigned depend on the automaton’s current state and possibly
some further conditions. Figure 3.6 shows this for the variable m.

While in gezel one focuses on the transitions in an automaton, in smv one places empha-
sis on the variables. Thus the main challenge of the transformation is to turn the gezel
transitions into these smv blocks of conditional assignments for each existing variable in
the program.

1: sfg sigA {m = 1;}
2: sfg sigB {m = 2;}
3: sfg sigC {m = 3;}
4:
5: initial s1;
6: @s1 (sigA) → s2;
7: @s3 if (i == 0)
8: then (sigB) → s4;
9: else (sigC) → s5;

Figure 3.5: gezel

next(m) :=
case
state=s1 : 1;
state=s3 & i=0: 2;
state=s3 & ∼(i=0): 3;

esac;

Figure 3.6: smv

After having built the smv data structure, the last step consists of traversing it and pro-
ducing the program in the target language.

13

Chapter 4

Tests

This Chapter shows two sample gezel-to-smv translations.
In the first example the compiler receives a gezel code which does nothing spectacular,
but includes a nested if-then-else clause. Thereon follows a more specific and topic-
related gezel program which is taken from [1] and implements a finite field exponentiation
algorithm.

dp prod (in x in : ns (4) ; in i i n : ns (1) ;
out done : ns (1) ; out r e s : ns (4)) {

reg x , p : ns (4) ;
reg i : ns (1) ;

s f g i n i t {x = x in ; i = i i n ; p = 0 ;}
s f g s i g 0 {p = 1 ; i = 0 ;}
s f g s i g 1 {p = 2 ;}
s f g s i g 2 {p = 3 ;}
s f g term {done = 1 ; r e s = p ;}
s f g cont {done = 0 ; r e s = 0 ;}

}

fsm c t l p r od (prod) {

i n i t i a l s1 ;
s t a t e s2 , s3 , end ;

@s1 (i n i t , cont) −> s2 ;
@s2 i f (x [3])

then i f (i==0) then (term) −> end ;
e l s e (s ig0 , cont) −> s2 ;

e l s e i f (i==0) then (s ig1 , cont) −> s3 ;
e l s e (s ig2 , cont) −> s3 ;

@s3 (term) −> end ;
@end (term) −> end ;

}

Figure 4.1: Input to Test1.

14

MODULE smvProg

VAR

s t a t e : { s1 , s2 , s3 , end } ;
x i n : array 3 . . 0 o f boolean ;
i i n : array 0 . . 0 o f boolean ;
done : array 0 . . 0 o f boolean ;
r e s : array 3 . . 0 o f boolean ;
x : array 3 . . 0 o f boolean ;
p : array 3 . . 0 o f boolean ;
i : array 0 . . 0 o f boolean ;

ASSIGN

i n i t (s t a t e) := s1 ;
next (s t a t e) :=
case
s t a t e=s1 : s2 ;
s t a t e=s2 & i=0 & x [3] : end ;
s t a t e=s2 & ˜(i =0) & x [3] : s2 ;
s t a t e=s2 & i=0 & ˜x [3] : s3 ;
s t a t e=s2 & ˜(i =0) & ˜x [3] : s3 ;
s t a t e=s3 : end ;
s t a t e=end : end ;

e sac ;

i n i t (done) := 0 ;
next (done) :=
case
s t a t e=s2 & i=0 & x [3] : 1 ;
s t a t e=s3 : 1 ;
s t a t e=end : 1 ;
1 : done ;

e sac ;

next (r e s) :=
case
s t a t e=s1 : 0 ;
s t a t e=s2 & i=0 & x [3] : p ;
s t a t e=s2 & ˜(i =0) & x [3] : 0 ;
s t a t e=s2 & i=0 & ˜x [3] : 0 ;
s t a t e=s2 & ˜(i =0) & ˜x [3] : 0 ;
s t a t e=s3 : p ;
s t a t e=end : p ;
1 : r e s ;

e sac ;

next (x) :=
case
s t a t e=s1 : x in ;
1 : x ;

e sac ;

next (p) :=
case
s t a t e=s1 : 0 ;
s t a t e=s2 & ˜(i =0) & x [3] : 1 ;
s t a t e=s2 & i=0 & ˜x [3] : 2 ;
s t a t e=s2 & ˜(i =0) & ˜x [3] : 3 ;
1 : p ;

e sac ;

next (i) :=
case
s t a t e=s1 : i i n ;
s t a t e=s2 & ˜(i =0) & x [3] : 0 ;
1 : i ;

e sac ;

Figure 4.2: Output of Test1.

15

dp prod (in x in : ns (8) ; in a i n : ns (4) ;
out done : ns (1) ; out prod1 : ns (8)) {

reg x : ns (8) ;
reg a : ns (4) ;
reg m : ns (8) ;
reg p , q , s : ns (8) ;
reg i : ns (3) ;
reg j : ns (4) ;

s f g i n i t {
x = x in ;
a = a in ;
m = 29 ;}

s f g s i g 0 {p=1;}
s f g s i g 1 {q=0;}
s f g s i g 2 { i =4;}
s f g s i g 3 { j =8;}
s f g s i g 4 { i=i −1;}
s f g s i g 5 { j=j −1;}
s f g s i g 6 { s=p ;}
s f g s i g 7 {p=q ;}
s f g s i g 8 { s=x ;}
s f g s i g 9 {q=q<<1;}
s f g s i g 10 { s=s<<1;}
s f g s i g 11 {a=a<<1;}
s f g s i g 12 {q=qˆm;}
s f g s i g 13 {q=qˆp ;}

s f g cont {
done = 0 ;
prod1 = 0 ;}

s f g term {
done = 1 ;
prod1 = x ;}

}

fsm c t l p r od (prod) {

i n i t i a l s1 ;

s t a t e s2 , s3 , s4 , s5 , s6 , s8 , s9 , s10 , s11 ,
s12 , end ;

@s1 (i n i t , s ig0 , s ig2 , cont) −> s2 ;

@s2 i f (i==0)
then (term) −> end ;
e l s e (s ig1 , s ig3 , s ig6 , cont) −> s3 ;

@s3 i f (j==0)
then (s ig7 , cont) −> s8 ;
e l s e (cont) −> s4 ;

@s4 i f (q [7])
then (s ig9 , cont) −> s5 ;
e l s e (s ig9 , cont) −> s6 ;

@s5 (s ig12 , cont) −> s6 ;

@s6 i f (s [7])
then (s ig5 , s ig10 , s ig13 , cont) −> s3 ;
e l s e (s ig5 , s ig10 , cont) −> s3 ;

@s8 i f (a [3])
then (s ig1 , s ig3 , s ig8 , cont) −> s9 ;
e l s e (s ig4 , s ig11 , cont) −> s2 ;

@s9 i f (j==0)
then (s ig4 , s ig7 , s ig11 , cont) −> s2 ;
e l s e (cont) −> s10 ;

@s10 i f (q [7])
then (s ig9 , cont) −> s11 ;
e l s e (s ig9 , cont) −> s12 ;

@s11 (s ig12 , cont) −> s12 ;

@s12 i f (s [7])
then (s ig5 , s ig10 , s ig13 , cont) −> s9 ;
e l s e (s ig5 , s ig10 , cont) −> s9 ;

@end (term) −> end ;
}

Figure 4.3: Input to Test2: Finite field exponentiation in F (28).

MODULE smvProg

VAR

s t a t e : { s1 , s2 , s3 , s4 , s5 , s6 , s8 , s9 ,
s10 , s11 , s12 , end } ;

x i n : array 7 . . 0 o f boolean ;
a i n : array 3 . . 0 o f boolean ;
done : array 0 . . 0 o f boolean ;
prod1 : array 7 . . 0 o f boolean ;
x : array 7 . . 0 o f boolean ;
a : array 3 . . 0 o f boolean ;
m : array 7 . . 0 o f boolean ;
p : array 7 . . 0 o f boolean ;
q : array 7 . . 0 o f boolean ;
s : array 7 . . 0 o f boolean ;
i : array 2 . . 0 o f boolean ;
j : array 3 . . 0 o f boolean ;

Figure 4.4: Output of Test2 (1/2).

16

ASSIGN

i n i t (s t a t e) := s1 ;
next (s t a t e) :=
case
s t a t e=s1 : s2 ;
s t a t e=s2 & i=0 : end ;
s t a t e=s2 & ˜(i =0) : s3 ;
s t a t e=s3 & j=0 : s8 ;
s t a t e=s3 & ˜(j =0) : s4 ;
s t a t e=s4 & q [7] : s5 ;
s t a t e=s4 & ˜q [7] : s6 ;
s t a t e=s5 : s6 ;
s t a t e=s6 & s [7] : s3 ;
s t a t e=s6 & ˜ s [7] : s3 ;
s t a t e=s8 & a [3] : s9 ;
s t a t e=s8 & ˜a [3] : s2 ;
s t a t e=s9 & j=0 : s2 ;
s t a t e=s9 & ˜(j =0) : s10 ;
s t a t e=s10 & q [7] : s11 ;
s t a t e=s10 & ˜q [7] : s12 ;
s t a t e=s11 : s12 ;
s t a t e=s12 & s [7] : s9 ;
s t a t e=s12 & ˜ s [7] : s9 ;
s t a t e=end : end ;

e sac ;

i n i t (done) := 0 ;
next (done) :=
case
s t a t e=s2 & i=0 : 1 ;
s t a t e=end : 1 ;
1 : done ;

e sac ;

next (prod1) :=
case
s t a t e=s1 : 0 ;
s t a t e=s2 & i=0 : x ;
s t a t e=s2 & ˜(i =0) : 0 ;
s t a t e=s3 & j=0 : 0 ;
s t a t e=s3 & ˜(j =0) : 0 ;
s t a t e=s4 & q [7] : 0 ;
s t a t e=s4 & ˜q [7] : 0 ;
s t a t e=s5 : 0 ;
s t a t e=s6 & s [7] : 0 ;
s t a t e=s6 & ˜ s [7] : 0 ;
s t a t e=s8 & a [3] : 0 ;
s t a t e=s8 & ˜a [3] : 0 ;
s t a t e=s9 & j=0 : 0 ;
s t a t e=s9 & ˜(j =0) : 0 ;
s t a t e=s10 & q [7] : 0 ;
s t a t e=s10 & ˜q [7] : 0 ;
s t a t e=s11 : 0 ;
s t a t e=s12 & s [7] : 0 ;
s t a t e=s12 & ˜ s [7] : 0 ;
s t a t e=end : x ;
1 : prod1 ;

e sac ;

next (x) :=
case
s t a t e=s1 : x in ;
1 : x ;

e sac ;

next (a) :=
case
s t a t e=s1 : a i n ;
s t a t e=s8 & ˜a [3] : a << 1 ;
s t a t e=s9 & j=0 : a << 1 ;
1 : a ;

e sac ;

next (m) :=
case
s t a t e=s1 : 29 ;
1 : m;

esac ;

next (p) :=
case
s t a t e=s1 : 1 ;
s t a t e=s3 & j=0 : q ;
s t a t e=s9 & j=0 : q ;
1 : p ;

e sac ;

next (q) :=
case
s t a t e=s2 & ˜(i =0) : 0 ;
s t a t e=s4 & q [7] : q << 1 ;
s t a t e=s4 & ˜q [7] : q << 1 ;
s t a t e=s5 : q ˆ m;
s t a t e=s6 & s [7] : q ˆ p ;
s t a t e=s8 & a [3] : 0 ;
s t a t e=s10 & q [7] : q << 1 ;
s t a t e=s10 & ˜q [7] : q << 1 ;
s t a t e=s11 : q ˆ m;
s t a t e=s12 & s [7] : q ˆ p ;
1 : q ;

e sac ;

next (s) :=
case
s t a t e=s2 & ˜(i =0) : p ;
s t a t e=s6 & s [7] : s << 1 ;
s t a t e=s6 & ˜ s [7] : s << 1 ;
s t a t e=s8 & a [3] : x ;
s t a t e=s12 & s [7] : s << 1 ;
s t a t e=s12 & ˜ s [7] : s << 1 ;
1 : s ;

e sac ;

next (i) :=
case
s t a t e=s1 : 4 ;
s t a t e=s8 & ˜a [3] : i − 1 ;
s t a t e=s9 & j=0 : i − 1 ;
1 : i ;

e sac ;

next (j) :=
case
s t a t e=s2 & ˜(i =0) : 8 ;
s t a t e=s6 & s [7] : j − 1 ;
s t a t e=s6 & ˜ s [7] : j − 1 ;
s t a t e=s8 & a [3] : 8 ;
s t a t e=s12 & s [7] : j − 1 ;
s t a t e=s12 & ˜ s [7] : j − 1 ;
1 : j ;

e sac ;

Figure 4.5: Output of Test2: Finite field exponentiation in F (28) (2/2).

17

Chapter 5

Conclusion

5.1 Results

The core objective of this semester thesis was to design and implement compilers from the
hardware description language gezel to the input languages of the model checkers smv
and spin. Starting this semester thesis without background in compiler design required
some extra time which led to the decision to leave out the ’gezel-to-spin’ compiler and
instead focus entirely on the ’gezel-to-smv’ compiler.

However, part of the code of the ’gezel-to-smv’ compiler can be reused for building the
’gezel-to-spin’ compiler. That is, the parser as well as the gezel data structure can be
taken one-to-one from the ’gezel-to-smv’ compiler implementation. Code that has to be
written from scratch includes the data structure of spin as well as the transformer.

The compiler can be run using the shell script that comes along with the program. Its
usage is simple. It takes as input two parameters, the source file and the target file. For
further information consult the included readme file.

5.2 Lesson learned

Having visited rather theoretical classes in the past, I hardly ever got the chance to
implement programs that were longer than a few lines. This semester thesis gave me the
opportunity to get some experience in programming and it even provided an insight into
a world that I haven’t been familiar with before at all, namely compiler design. With
no background knowledge on building compilers it took me some time to get acquainted
with the topic. Nevertheless, it was a pleasure and surely interesting to see into a totally
different subject and get to learn something that I wouldn’t have learned otherwise.

5.3 Future Work

For reasons mentioned earlier, we could not include all ideas we had in mind.

Further extensions to the currently existing work are:

18

• At present the compiler is able to interpret a subset of the gezel language. The
next step therefore is to enhance the vocabulary of gezel expressions which will be
accepted and processed by the compiler so that a wider range of programs can be
translated.

• Implementation of a second compiler from the hardware description language gezel
to the input language of the model checker spin by reusing part of the code from
the gezel-to-smv compiler implementation.

19

Bibliography

[1] Boris Köpf and David Basin. Timing-Sensitive Information Flow Analysis for Syn-
chronous Systems. ETH Zürich, Switzerland, 2006.

[2] Gerwin Klein. JFlex: The Fast Lexical Analyser Generator.
http://www.jflex.de/manual.pdf, 2004.

[3] Scott E. Hudson. CUP: LALR Parser Generator For Java.
http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html, 1999.

[4] Patrick Schaumont. GEZEL language Reference 2.0.
http://rijndael.ece.vt.edu/gezel2/index.php/GEZEL_Language_

Reference, 2005.

[5] K. L. McMillan. The SMV language. Berkeley, CA, USA, 1999.

20

