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ABSTRACT
We present a generic modular policy modelling framework
and instantiate it with a substantial case study for model-
based testing of some key security mechanisms of applica-
tions and services of the NPfIT. NPfIT, the National Pro-
gramme for IT, is a very large-scale development project
aiming to modernise the IT infrastructure of the National
Health Service (NHS) in England. Consisting of heteroge-
neous and distributed applications, it is an ideal target for
model-based testing techniques of a large system exhibiting
critical security features.

We model the four information governance principles, com-
prising a role-based access control model, as well as policy
rules governing the concepts of patient consent, sealed en-
velopes and legitimate relationships. The model is given in
Higher-order Logic (HOL) and processed together with suit-
able test specifications in the hol-TestGen system, that
generates test sequences according to them. Particular em-
phasis is put on the modular description of security poli-
cies and their generic combination and its consequences for
model-based testing.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection

General Terms
Security, Languages
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1. INTRODUCTION
The National Health Service (NHS) in England’s National

Programme for Information Technology (NPfIT) is one of the
most ambitious and challenging ongoing IT projects world-
wide [9].1 At the heart of the project lies the development
of a nationwide on-line service, also known as the Spine, en-
abling health professionals and patients to access electronic
health records. Many lessons can be learnt from studying
the security mechanisms of a real-world system—perhaps
most notably, that the traditional borderline between secu-
rity and safety, (where security is understood as “protecting
the confidentiality, integrity and availability of information
systems” and safety is viewed as “protection of health and
life of humans”), becomes pretty artificial, since erroneous or
missing health-care records can lead to serious harm to pa-
tients [2, 10]. In contrast to such “compartmentalised think-
ing,” the analysis of real-world scenarios needs a more in-
terdisciplinary approach combining formal methods, formal
testing, computer security, and software engineering.

The security requirements—called Information Governance
(IG) in the NPfIT terminology—are informally specified in
many official documents (e. g. [17, 18]). Ensuring that all of
the applications and services of the NPfIT individually and
collectively comply with these policies, is a very difficult
task. An approach based on verification is impossible to be
successful in such a complex scenario with a heterogeneous
and distributed code-base. Model-based Testing (MBT) is
an ideal approach to address these problems and can help to
increase confidence in the security mechanisms of the NPfIT.
We advocate a technique to create a model of the relevant re-
quirements, automatically generate test sequences from the
model and run them against the real system to both vali-
date our formalisation as well as finding bugs in the various
implementations. The challenges of modelling these Infor-
mation Governance principles are manifold:

1Possible future and recently announced changes in name
and scope of the programme by the government are not con-
sidered in this paper.
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• The access control rules for patient-identifiable infor-
mation are complex and reflect the trade-off between
patient confidentiality, usability, functional, and leg-
islative constraints. Traditional discretionary and man-
datory access control models as well as standard Role-
based Access Control (RBAC) [1] are insufficiently ex-
pressive to capture complex policies such as Legitimate
Relationships (LR), Sealed Envelopes (SE), or Pa-
tient Consent (PC) management. Therefore, both a
framework for their uniform modelling as well as their
combination is needed.
• The access rules of such a large system comprise not

only elementary rules of data-access, but also access
to security policies themselves enabling policy man-
agement. The latter is, for example, modelled in ad-
ministrative RBAC [1, 30] models.
• The requirements are mandated by laws, official guide-

lines and ethical positions (e. g. [16, 32]) that are prone
to change. Such changes have to be enforced through-
out a distributed and heterogeneous system, i. e. the
Spine and the applications that access it from various
sites. Moreover, the accessing applications also have
to conform to local policies.

This world of informal, high-level information governance
descriptions is in contrast to the formalised world of poli-
cies in Higher-order Logic (HOL). We have developed a
somewhat non-standard view on the fundamental concept
of policies. This view has arisen from prior experience in
the modelling of network (firewall) policies [13]. Instead of
regarding policies as relations on resources, sets of permis-
sions, etc., we emphasise the view that a policy is a policy
decision function that grants or denies access to resources,
permissions, etc. In other words, we model the concrete
function that implements the policy decision point in a sys-
tem. An advantage of this view is that it is compatible with
many different policy models. Furthermore, this function is
typically a large cascade of nested conditionals, using condi-
tions referring to an internal state and to security contexts of
the system or a user. This cascade of conditionals can easily
be decomposed into a set of test cases similar to transfor-
mations used for Binary Decision Diagrams (BDDs). From
the modelling perspective, our system uses HOL as its input
language, offering all the expressive power of a functional
programming language, including the possibility to define
higher-order combinators. In more detail, we model policies
as partial functions (written as ⇀ ) based on input data
of type α (e. g., arguments, system state, security context)
to output data of type β:

types α 7→β= α⇀ β decision ,

where the enumeration type β decision just consists of the
two variants allow β and deny β. Partial functions are used
since we describe elementary policies by partial system be-
haviour, which are glued together by operators such as func-
tion override and functional composition.

A particular instance of this generic concept of policy is
the transition policy. Transition policies have the form:

α×σ 7→β×σ

where σ refers to some system state. Transition policies are,
as we will see later, isomorphic to state-exception monads
and therefore amenable to the approach of hol-TestGen [14]
to sequence testing (based on models in HOL). Since policies
in our sense—e. g. a decision function or decision table for an

RBAC model—are possible elements of a system state σ, we
can have policies that transform policies in our framework:

(α×(γ 7→δ)) 7→(β×(γ 7→δ))

Since these constructs in HOL have a type of order two, we
call this form of transition policies second order policies.

Our contributions are three-fold:
1) we present a modular modelling framework for security

policies,
2) we instantiate our modelling framework with a large,

real-world case study in the health-care domain,
3) we show how to generate test sequences for this case

study using hol-TestGen [11, 12]. The generated test
sequences can be used for testing, e. g. Web Service-
based, applications that access the Spine.

The organisation of the paper is as follows: in Section 2 we
explain our background, i. e. the NPfIT and hol-TestGen,
in Section 3 we present briefly our framework for modelling
security polices and in Section 4 its instantiation with the
NPfIT concepts. In Section 5 we discuss the generation of
test data on the basis of test specifications, i. e. concrete
properties of the system.

2. BACKGROUND

2.1 Overall System Architecture of the NPfIT
At the core of the National Programme for Information

Technology (NPfIT) is the Spine, a collection of services
provided centrally and used by applications installed locally
in hospitals, doctors practises, etc. The most important
of these services is the Care Records Service (CRS), pro-
viding authorised health care staff (here called users) ac-
cess to an electronic health record (called Summary Care
Record (SCR)) for every patient in England.

The rights of the information subject to privacy, and the
need to provide an efficient and effective service to the cus-
tomer (who is often also the information subject) pose con-
flicting information access requirements, and defining poli-
cies that balance the two is a challenge. This holds in partic-
ular for applications in the health care domain in which very
sensitive data is handled, but withholding that data may
endanger the patient’s health. For example, an emergency
paramedic could harm an accident victim by administering
emergency treatment without knowing about allergies and
other medication being used.

The Information Governance (IG) principles are expressed
in terms of four main concepts: Role-based Access Control
(RBAC), Legitimate Relationships (LR), Sealed Envelopes
(SE) and Patient Consent (PC) Management.

2.1.1 Role-Based Access Control (RBAC)
NPfIT uses a variant of administrative RBAC [30] to con-

trol who can access what system functionality.2 Each user is
assigned one or more User Role Profile (URP). Each URP

permits the user to perform several activities. Activities are
generic descriptions of business functionality grouped in a
hierarchy. Each application that is part of the NPfIT, must
define its set of application functions which have to be con-
trolled by RBAC. Each of these functions is mapped to one
or more activities. Thus, each permitted activity gives a user

2In this paper, we follow the naming convention of the NPfIT

documents which, in some cases, deviates from widely-used
RBAC definitions such as [1, 30].



access to a set of application functions. A URP contains the
following main elements:
Job Role: a generic description of the job of a user, e. g.

General Practitioner (GP).
Areas of Work: e. g. mental health. Partly, in combina-

tion with a specific role, confer additional access rights.
Additional Activities: used to grant additional permis-

sions to an individual user. This adds flexibility and
minimises the number of roles required. They grant a
user permissions which he otherwise would not have.

Thus, there are three reasons to grant a user rights to per-
form an activity: a) It is a generic requirement of a Job
Role b) It is a requirement of members of a Job Role work-
ing in a specialised discipline c) It is an explicit require-
ment of the individuals job. The mappings for the first two
points are common throughout the NPfIT and stored in a na-
tional database on the Spine, containing the set of activities
granted for each role and role-area of work combination.

2.1.2 Legitimate Relationships (LR)
Whereas RBAC expresses the need to use application func-

tions, Legitimate Relationships (LR) express the need to
view or change records of particular patients. A user is
only allowed to access the data of patients in whose care
he is actually involved. Users are assigned to hierarchically
ordered workgroups that reflect the organisational structure
of a workplace.

There are ten different types of LRs. Eight of them are
between a patient and a workgroup, two between a pa-
tient and a single user. LRs can either be active or frozen.
Loosely speaking an active LR denotes a current relation-
ship, whereas a frozen LR indicates a previous relationship.
A frozen LR only allows access to data created before a spe-
cific time in the past. All LRs carry an expiry date. There is
a complex set of rules governing the dynamic behaviour of
these LRs. Sometimes, users can also self-claim an LR (e. g.
in case of an emergency), but this always triggers a message
to the responsible privacy officer (the Caldicott Guardian).

While the circumstances under which LRs can be cre-
ated are clearly defined, this is done by each application
itself, usually transparently to a user as part of the work-
flow within an application. For example, when a General
Practitioner (GP) refers a patient to a hospital clinic, the
recipient application will automatically create an LR for the
workgroup associated with the clinical team. The applica-
tions report the changes of the LRs to the Spine, which stores
all the current LRs together with the workgroup member-
ships and their hierarchy. Applications can query the Spine
to find out if a user has an LR with a patient. The Spine
itself does not enforce correct treatment of the LRs by the
applications.

2.1.3 Patient Consent (PC)
Patients can opt out of having a Summary Care Record

(SCR) at all, in which case no health care details will be
uploaded to the Spine; a blank SCR will be created. If an
SCR is created, the patient may choose to be asked every
time a user attempts to add or read data and can refuse
this. Alternatively, a patient can grant this right once and
for all. If a patient with an SCR decides to opt out later,
his care record will be suppressed. A complete deletion of a
record is only possible in special cases.

Some of the data will always be shared, even if users dis-
sent, e. g. demographic data and information about a pa-
tient’s GP.

2.1.4 Sealed Envelopes (SE)
The sealing concept is used to hide parts of a health care

record from users. There are three different kinds of seals:
Seal: Sealed information is hidden except from users in the

same workgroup as the creator of the seal. Other users
can detect sealed parts and unlock a seal in specific
cases.

Seal and lock: Like seal, but without the possibility of de-
tection of sealed parts.

Clinician seal: Used to hide data from a patient. Users
are able to detect sealed parts and to unlock them,
but are supposed to keep them confidential from the
patient. A patient cannot detect parts sealed in this
way when accessing his record directly.

Patients cannot create seals themselves; only users can do
this on their behalf. Some data is sealed automatically, e. g.
test results, while other data can never be sealed.

Not all of the concepts mentioned have been implemented
yet, some are not yet completely specified and are subject to
change. In particular, the concept of Sealed Envelopes has
recently been dropped from the NPfIT. In our model, we
therefore sometimes had to use simplified approximations in
the spirit of the policies. In rare cases where we could not
get access to the latest policy documents, we made our own
assumptions or used earlier specifications. While we tried
to stay as close as possible to the “real” policy, our model
cannot be viewed as a true description of what is in place
now or will be there in a final system implementation.

2.1.5 Example
As an example, consider a situation in which Alice is

both a clinical practitioner and a clerical, Bob and John
are nurses. Bob may add or remove people to or from
workgroups. Alice, in her role as clinical practitioner, and
John belong to the workgroup surgery. Alice, in her role
as clerical, and Bob belong to the workgroup orthopedics.
Now assume two patients Paula and Pablo whose patient
records should be (partially) available to Alice, Bob, and
John. Modelling such a scenario in traditional security mod-
els such as ANSI conform RBAC [1] or Bell-LaPadula [8] is
at least difficult, if not impossible. In the NPfIT framework
we can model dynamic relationships between patients and
their medical practitioners. For example, we can model that
Paula has a legitimate relationship with the working group
surgery, Alice is his general practitioner. Her record has
three entries. The first one is sealed (open) for surgery, the
second one is sealed (open) for orthopedics, the third one is
open. Pablo has a legitimate relationship with orthopedics,
and no entries in his patient record.

2.2 A Note on HOL-TestGen
hol-TestGen is an interactive, i. e. semi-automated, test

tool for specification-based tests built upon Isabelle/HOL.
Isabelle [26] is an interactive modelling and theorem proving
environment; among other logics, Isabelle supports Higher-
order Logic (HOL) [15]. HOL is a classical logic with equality,
enriched by total higher-order functions; thus, it offers the
usual logical connectives ¬A, A ∧ B, A → B, A = B and
∀x. P (x), etc. HOL is a language typed with Hindley/Mil-



ner polymorphism; type variables are denoted by α, β, γ,
etc. Function types are written by α⇒ α’, functions by

λ-notation. Support for datatype definitions like:

datatype α option = Some α | None

introducing the option type as an enumeration with the al-
ternatives Some x and None, and the usual pattern matching
notation give Isabelle/HOL a similar flavour like functional
programming languages like F# or Haskell, except that the
combined language comprises logical quantifiers and logi-
cal, extensional equality. Thus, it often allows a very natu-
ral way of specification. Isabelle/HOL provides also a large
collection of theories like pairs, sets, lists, multisets, maps,
orderings, and various arithmetic theories. Of particular im-
portance for the models described here is the type of partial
functions α ⇀ β, modelled as synonym to functions α⇒
β option, which also provides the usual concept of domain
domfand range ranf on them.

hol-TestGen is an extension to Isabelle/HOL designed
to support model-based testing. It offers support for the
typical phases of a model-based testing process: 1) writing
the test theory, i. e. a collection of basic types and auxil-
iary functions formalising the problem domain, 2) writing
the test specification, TS, specifying the concrete property
to be tested, 3) the test case generation phase, i. e. an au-
tomated conversion of TS into a sequence of test cases, TC,
(or: partitions) representing classes of possible input, 4) the
test data generation phase, during which concrete members
are constructed for the TC, and 5) the test execution phase
when hol-TestGen generates a test script driving the ac-
tual testing. Once a test theory is completed, documents
can be generated that represent a formal test plan, includ-
ing test theory, test specifications, configurations of the test
data and test script generation commands.

The core of the test case generation procedure lies in case
splittings up to a certain depth for each free or universally
quantified (input) variable in the test specification; depth
and form of the case split depend on the type of the variable.
The resulting test cases, TCi, have the form C1 x ∧ · · · ∧
Cn x → P (PUT x), where PUT is a place-holder for the
program under test, x is the input vector and P is the oracle
or postcondition telling that the output of PUT complies
with the test specification. Test data generation from test
cases boils down to a constraint resolution process finding
an x satisfying the constraints Ci. The reader interested in
more details is referred to [11, 12].

2.3 Monads for Sequence Testing
Modelling and reasoning over computations requires mech-

anisms to deal with states and state transitions within the
logic. HOL, however, as a purely functional specification
formalism has no such built-in concepts. Using monads—
a concept made popular for purely functional programming
languages by Peyton Jones and Wadler [28]—is one way to
overcome this apparent limitation. Abstractly, a monad is
a type constructor with a unit and a bind operator, enjoy-
ing unit and associativity properties. Due to well-known
limitations of the Hindley-Milner type system, it is not pos-
sible to represent monads as such in HOL, only concrete
instances. We define such an instance for our purpose, the
state-exception monad, which models precisely partial state
transition functions of type

types (o, σ) MONSE = σ⇀(o ×σ)

Using monads, we can view our programs under test, PUT,
as i/o stepping functions of type ι ⇒ (o,σ)MONSE, where
each stepping function may either fail for a given state σ
and input ι, or produce an output o and a successor state.

The usual concepts of bind (representing sequential com-
position with value passing) and unit (representing the em-
bedding of a value into a computation) are defined for the
case of the state-exception monad as follows:

definition bindSE :: (o,σ)MONSE ⇒(o ⇒(o’,σ)MONSE) ⇒
(o ’,σ)MONSE

where bindSE f g ≡λσ. case f σ of None ⇒None
| Some(out, σ’) ⇒ g out σ’

definition unitSE :: o ⇒(o, σ)MONSE

where unitSE e ≡λσ. Some(e,σ)

We write x←f ; g for bindSE f(λ x. g) and return for unitSE.
On this basis, the concept of a valid test sequence can be
specified:

σ |= o1←PUT i1; ...; on←PUT in; return (P o1 ... on)

where σ |=m is defined as (m σ 6=None ∧ fst (the (m σ))) and
where the (Some x)= x. For iterations of i/o stepping func-
tions, we also use an mbind operator, which takes a list of in-
puts ιs = [i1,...,in], feeds it subsequently into PUTand stops
when an error occurs. Using mbind, valid test sequences can
be reformulated by:

σ |= os ← mbind PUT ιs ; return (P os)

which is the standard way to represent sequence test speci-
fications in hol-TestGen.

3. MODELLING POLICIES IN HOL: UPF
In this section, we present the Unified Policy Framework

(UPF), a generic framework for the modular modelling of
testable security policies.

3.1 Foundation: Policies as Functions
We model the concept of a policy by partial policy deci-

sion functions. Partial functions are used since we describe
elementary policies by partial system behaviour, which are
glued together by operators such as function override and
functional composition. In more detail, the partial policy
decision functions are based on input data α (e. g., argu-
ments, system state, security context) to output data β:

types α 7→β = α ⇀ β decision

where the enumeration type decision is defined as:

datatype α decision = allow α | deny α

This definition gives rise to a clear separation of the set of
decisions into the allowance-set or A ≡{x | ∃ y. x = allow
y} and the analogously defined deny-set D.

We introduce a number of common operations over poli-
cies p: these include update

p(x7→t) ≡λ y. if y = x then Some t else p y

and its variants

p(x+7→t) ≡p(x7→allow t) and p(x−7→t) ≡p(x7→deny t)

Elementary policies are

∅ ≡λ x. None
∀Af ≡λ x. Some (allow f x) (AllowAll)
∀Df ≡λx. Some (deny f x) (DenyAll)

The operation override
⊕

:: [α ⇀ β,α ⇀ β] ⇒ α ⇀ β
allows elementary policies (rules) to be combined to more
complex ones in a first-fit manner, e. g.:

p1
⊕
· · ·

⊕
pn

⊕
∀Df



where the last rule serves as “catch-all” (for a given function
f producing the default return value, if any).

There are the notions of a domain dom p :: [α ⇀ β] ⇒
α set and a range ran p :: [α ⇀ β] ⇒ β set. Inspired by
the Z notation [31], we introduce the concept of domain
restriction S / p ≡λ x. if x ∈ S then p x else None and
range restriction p . S, defined analogously.

As an example, consider the Permission Assignment (PA)
of Core RBAC [1]:

types PACoreRBAC = (ROLES ×PRMS) 7→unit,

where the type unit (not to be confused with the unit oper-
ator for monads) consists of only one element written (). It
is used for policies having no output.

As another example, consider firewall policies as intro-
duced in [13]:

types FP = packet 7→packet,

which also covers network address translations, i. e. the pol-
icy may allow a certain packet only after modification of its
source or destination address.

3.2 Combining Policies
In the “policy-as-function”-view, policies are easy to com-

bine using (higher-order) combinators. A number of generic
combinators is provided in the UPF for common situations.
There is a wide range of different semantic flavours that
can be used in combination (similar to the policy combin-
ing algorithms of the eXtensible Access Control Markup
Language (XACML) [27]). Consider the following semantics
for combining two policies. Each of these can be desirable
in different applications:
• First defined rule applies (this corresponds to the over-

ride
⊕

discussed previously)
• If allowed by any policy, return allow (called

⊗
∨A )

• If denied by any policy, the decision is deny (called⊗
∨D )

• Only allow if allowed by both policies (called
⊗
∧A )

• Only deny if denied by both policies (called
⊗
∧D )

The latter four policies are inspired by parallel composition
of automata: each policy makes an (independent) step, and
the result is a step relation on the Cartesian product of
states. As an example, consider parallel-or-deny :

definition
⊗
∨D :: (α 7→β) ⇒(γ 7→δ) ⇒(α×γ 7→β×δ)

where p1
⊗
∨D p2 = (λ(x,y). (case p1 x of

Some (allow d1) ⇒ (case p2 y of
Some (allow d2) ⇒ Some (allow (d1,d2))
| Some (deny d2) ⇒Some (deny (d1, d2))
| None ⇒None)

| Some (deny d1) ⇒ (case p2 y of
Some (allow d2) ⇒ Some (deny (d1, d2))
| Some (deny d2) ⇒Some (deny (d1, d2))
| None ⇒None)

|None ⇒None))

The other cases proceed analogously. Since policies may
have output in general, another fundamental combination
concept is sequential composition. Similar to the parallel
composition, four essential cases are to be distinguished and
lead to the composition operators ◦∨D , ◦∨A , ◦∧D , and
◦∧A , which all have the type: (β 7→γ)⇒(α 7→β)⇒(α 7→γ).
It may be necessary to adapt the input type or output

type of a policy to a more refined context. This boils down
to variants of functional composition for functions that do
not have the format of a policy. With the standard function
composition ◦ it is possible to change the input domain

of a policy p :: (β 7→ γ) to p ◦ f :: (α 7→ γ), provided that f is
a coercion function of type α ⇒ β. The same effect can be
achieved for the range with the ∇-operator defined by:

(f ,g) ∇ p ≡λ x. case p x of
Some(allow x) ⇒ Some(allow (f x))
| Some(deny x) ⇒Some(deny (g x))
| None ⇒ None

It turns out that the two families of product and sequence
operators are essentially enough to define a core language,
which enjoys a number of properties, which we proved for-
mally in Isabelle: For all sum, product, and sequential oper-
ators ∅ is neutral (i. e. p

⊗
∨D ∅= ∅

⊗
∨D p = ∅), all these

operators are associative, enjoy some form of commutativity
or pseudo-commutativity (i. e. p

⊕
q = q

⊕
p if dom p and

dom q are disjoint, or p
⊗
∨D q = (((λ(x,y). (y,x)) of (q

⊗
∨D p))) o (λ(a,b).(b,a)) where g of p is an abbreviation for
(g,g) ∇ p), and various forms of distributivity. All these
algebraic laws established as derived rules give rise to a tool
to normalise policies in order to simplify the task of an au-
tomated equivalence proof or test-case generation. For the
special case of firewall policies, this technique has been suc-
cessfully applied in [13] and has led to a breakthrough in the
efficiency of the overall procedure.

3.3 Linking Transition Policies to Execution
Sequences

A particular instance of the policy concept is the second-
order transition policy of the form:

ι×σ 7→o×σ

where σ refers to some system state. Such transition poli-
cies are isomorphic to ι⇒(o decision ,σ) MONSE; thus, i/o
stepping functions and transition policies are closely linked
concepts and there are two conversion functions linking these
two. Here, we will only present:

definition policy2MON::(ι×σ)7→(o×σ) ⇒ι⇒(o decision,σ)MONSE

where policy2MON p = (λ ισ. case p (ι ,σ) of
Some (allow (o, σ ’)) ⇒ (Some (allow o, σ ’))
| Some (deny (o, σ ’)) ⇒ (Some (deny o, σ’))
| None ⇒ None)

It is easy to check that policy2MON is a bijection to state
exception monads of the form: (o decision ,σ)MONSE. As
mentioned earlier, this link is import for the sequence testing
approach of hol-TestGen (see Section 5).

4. MODELLING NPFIT POLICIES
In this section, we show the instantiation of the UPF with

a model of the Information Governance principles of the
NPfIT. These principles are a typical example of a com-
plex and realistic access-controlled system consisting of a
range of different policy concepts. Thus, the instantiation
allows us to present a typical usage of the UPF and proves
its applicability in real-world scenarios.

While the individual policy parts will be quite different
in other systems, the employed modelling strategy is typi-
cal and shows how the UPF can often be used. Abstractly
speaking, the strategy is the following:
• Model the generic concepts of the scenario, here health

records, the desired system operations, etc.
• Model the different policy parts in small units, here

typically using a policy type of the form (ι×σ 7→ unit),
with different kinds of states σ.



• Model the system behaviour, again in a modular way,
leading to two automaton: one for the normal be-
haviour, one for the exceptional behaviour.
• Use the combinators of the UPF to combine these parts

(according to the desired test scenario, different com-
binations might be desired).
• Transform the combined policy into a state-exception

monad to enable use of hol-TestGen’s sequence test-
ing framework.

In the following, we only briefly outline how the individual
parts of the systems can be modelled, and focus on their
combination.

4.1 NPfIT Concepts and Operations
First, we describe how we model those main concepts of

the NPfIT system which are relevant for the policy. The most
important part is the set of Summary Care Records (SCRs),
as the IG principles mainly govern access to them. An SCR

is modelled containing some basic information including var-
ious status flags, plus references to demographic information
(held by the Personal Demographics Service (PDS)), and to
the proper care record content. Only last of these is gov-
erned by the concepts of LR, PC, and can be sealed. PC

information is held in the main SCR, while seals are part of
the content entries.

record entry = entry id :: entry id
entry type :: entry type
seal :: seal
provider :: user
entry content :: content

record SCR = patient id :: patient
flag :: consent flag
GP :: user

...
PDS :: entry id ⇀ PDS entry
content :: entry id ⇀ entry

We view the Spine as a partial function from patients to
SCRs. We do not use it in the same meaning as in the NPfIT

terminology.

types Spine = patient ⇀ SCR

Whenever a user wants to access a system function, he
needs to present a User Role Profile (URP). While a user
may have several URPs, only one at a time is active during
an application session. URPs are defined by a record:

record urp = nhs id :: user
org :: org id
role :: Role
aows :: AoW set
activities :: Activity set

The user context υ stores all attributed URPs. This is
needed as a user may only access the system with a URP

that belongs to him:

types υ = user ⇀ (urp set)

Next, we model 29 operations, which are generic abstrac-
tions of functional behaviours governed by the IG princi-
ples that may be implemented in applications. All of them
are about creating, editing, reading, and deleting an SCR

or parts of it, including consent information and seals, or
changing or querying the user or security context (see 4.4).
Note that these operations are not equal to the activities
mentioned earlier. They are part of the model only and
restricted to policy-related parts of the system. When per-

forming the tests, these operations need to be mapped to
concrete functions. Here we only show a selection of them:

datatype Operation = createSCR urp patient name address
dob consent flag user

| extendSCR urp patient entry
| readSCR urp patient
| deleteSCR urp patient
| removeEntry urp patient entry id
| editEntry urp patient entry id entry
| readEntry urp patient entry id

In some cases we might be interested in the output of an
operation. We model the possible outputs as enumeration,
including one element with an arbitrary string and the pos-
sibility to concatenate several outputs.

datatype Output = OutEntry entry | OutSCR SCR | ...
| OutMsg string | Conc Output Output ( infixl $ 80)

As an example (see Section 2.1.5), the following sequence
of operations describes a system execution where first user
Bob presenting one of his URPs adds a URP of user John to
a specific workgroup, and then John wants to read the SCR

of patient Pablo.

[(addToWG urp bob 1 {urp john}), (readSCR urp john pablo)]

4.2 NPfIT RBAC
In this section, we formalise the RBAC part of the NPfIT

policy. As described in 2.1.1, the main ingredients of RBAC

are User Role Profiles (URPs), roles, Areas of Work (AoW),
activities, and functions.

The policy consists of several mappings: a) A mapping
between roles and activities b) The hierarchy on the activ-
ities c) A mapping between roles and Areas of Work and
activities d) A mapping between an application’s functions
and activities. The first three mappings are relatively static
and the same for every application, while the last one is
application-dependent. All of them are modelled as simple
relations.

Depending on the test scenario, we need to come up with
different kinds of RBAC policies:
• Function × user × urp × υ 7→ unit when we want to

test the correctness of the RBAC implementation of
a specific application.
• Operation × υ 7→ unit where the operations are mapped

to an application’s functions, if this policy is combined
with other concepts to test the correct Information
Governance (IG) implementation of a specific appli-
cation.
• Operation × υ 7→ unit where the operations are mapped

to activities, if this policy is combined with other con-
cepts to test the IG principles independently from a
concrete application.

All of them are built up by using the provided relations, a
mapping for the operations, and a decision function that im-
plements the RBAC behaviour (e. g. a function is granted to
a user if he presents a valid URP that allows him to perform
an activity that is mapped to the desired function).

4.3 Patient Consent (PC)
The concept of Patient Consent (PC) governs whether a

care record can be created and data be uploaded to it. To
enforce this, every SCR contains a flag which can take on
five different values:

datatype consent flag = opt out | ask | dontask | suppressed
| unknown



They have the following meaning: opt out: The patient has
explicitly chosen not to have a care record. It is not possible
to upload medical data, however there is still a record con-
taining demographic information. ask: The patient wants to
have a care record, however users must ask him every time
they want to upload any new data. dontask: The patient
wants to have a care record, however he does not want to
be asked again before uploading. suppressed: The patient
had an SCR but has chosen to have it deleted. Some in-
formation will however be retained and made available for
reading for some time for administrative and legal reasons.
unknown: If the wish of the patient is unknown. Currently,
this is interpreted as ask.

The rules about patient consent have the following type:

types PCPolicy = (Operation ×Spine) 7→unit

As only a limited number of operations is governed by these
rules, we specify the set PC Relevant Ops.

Next, we define the individual rules modelling the desired
semantics of the consent flag. As an example the following
one allows all operations if the flag is set to dontask:

definition dontaskPolicy :: PCPolicy where
dontaskPolicy = (λ(op,sp). ( if op ∈ PC Relevant Ops

then (case SCROp (op,sp) of
Some s ⇒ (case flag s of dontask ⇒ Some (allow ())

| ⇒ None)
| ⇒ None)

else None))

Here, SCROp (op,sp) returns Some SCR as specified by the
input of the operation op and the Spine sp or None if it
does not exist. The other rules are similar and the full PC

policy is the override (
⊕

) of all these rules, with the default
AllowAll rule for the non-matching inputs.

4.4 Legitimate Relationship (LR)
There are ten different types of Legitimate Relationships

(LR), which need to be distinguished:

datatype LR Type = PatientReferral | SelfClaimed ( ... )

The LRs also have a status, which can take any of the
following values:

datatype LR Status = active | inactive | frozen | expired

The workgroups are sets of User Role Profiles (URPs) and
have a unique identifier. While eight of the LRs are between
a patient and a workgroup, two of them are between a pa-
tient and a single user. This is modelled as follows:

datatype lr to = WG wg id | User urp

An LR is a record containing the following elements:

record LR = lr id :: lr id
lr patient :: patient
lr to :: lr to
lr type :: LR Type
lr status :: LR Status

The policy about Legitimate Relationships (LR) needs as
context information all the existing LRs and the workgroup
memberships. These are stored in a security context Σ:

types Σ = (patient ⇀ LR set) × (wg id ⇀ workgroup)

An LR policy is of the following type:

types LRPolicy = (Operation ×Σ) 7→unit

The function hasLR returns True if the given user has an
active LR of any type with a specific patient in given security
context. A typical rule about the concept of LRs then looks
as follows:

LRPolicy1 (( editEntry u p e i e ), Σ) = (if hasLR u p Σ
then Some (allow ()) else Some (deny ()))

Other rules (mainly those about how LRs can be transferred)
additionally need to take the concrete type and status of an
LR into account. Again, all the LR rules can be combined
straightforwardly.

As an example, user John in the example mentioned ear-
lier will only be able to read Pablo’s SCR, if he is in a work-
group which has an active LR to Pablo. Here, this is achieved
by Bob adding him to workgroup 1 just before.

4.5 Sealed Envelopes (SE)
Each content entry of an SCR has a flag showing the seal-

ing status of that entry. The flag can take on any of five
values:
seal open wg: The entry is sealed with an open seal, only

users in the workgroup with id wg can read this en-
try, but others may know that the entry exists, and
override the seal when this is justified.

seal lock wg: The entry is sealed with a locked seal, only
users in the workgroup with id wg can read this entry
or know that the entry exists.

seal patient: The entry is hidden from the patient.
not sealed: The entry is not sealed.
not sealable: The entry must never be sealed.

The rules about Sealed Envelopes (SE) use information
from the care records and the workgroup memberships. Thus,
their type is:

types SEPolicy = (Operation ×Spine ×Σ) 7→unit

A user is allowed to read an entry directly (i. e. without
breaking a seal), if the entry is either not sealed or, else, he
is a member of the respective workgroup. Such a rule can
be modelled as follows, where userHasAccess checks mem-
bership in an allowed workgroup if required:

definition readEntry :: SEPolicy
where readEntry x = (case x of

(readEntry u p e id ,S,( lrs ,wgs)) ⇒
(case get entry S p e id of

None ⇒ None
| Some e ⇒ ( if (userHasAccess u wgs e)

then Some (allow ())
else Some (deny ())))

| x ⇒ None)

The other rules are similar. We must, however, not forget
rules specifying that only a seal open seal can be broken and
that a not sealable seal must never be sealed.

4.6 State Transitions
As we want to test a system that changes over time, we

need to model state transitions. The relevant state in this
case consists of three individual parts: the Spine, the secu-
rity context, and the user context. The state transitions are
triggered by an operation and there are usually two cases:
a transition if the operation is allowed by the policy, and a
transition if the operation is denied by the policy. We model
each of these state transitions individually, thus leading to
six different transitions. The output is modelled similarly.
In the following, we show an excerpt of the state transition
for an allowed operation on the Spine.

fun ST A Spine :: (Operation ×Spine) ⇀ Spine
where ST A Spine ((extendSCR u p e), S) =

(case S p of None ⇒Some S
| Some x ⇒Some (S(p7→x(|content := (content x)

((SOME y. y /∈(dom (content x))) 7→e)|))))



The individual state transitions can be combined to a sin-
gle big one using the UPF operators. The following, e. g., is
a model of the system behaviour if there were no policy:

definition ST Allow ::
Operation ×Spine ×Σ×υ ⇀ Output ×Spine ×Σ×υ
where
ST Allow = ((OUTPUT A p m (ST A Spine o st ST A Σ

o st ST A υ))
o (λ (a,b,c,d). ((a,b),(a,b,c,d))))

where o st and p m are operators from the UPF for par-
allel combinations of state transitions or partial functions
respectively. ST Deny is defined similarly.

4.7 Combination
So far, we have modelled only small individual parts of

the system and its policy. In the end, all of them have to
be combined to a transition policy to model to desired real
behaviour. Despite the individual parts being rather distinct
from each other, their combination is quite easy using the
operators of the UPF. First, all the policy parts can be
combined:

definition appPolicy :: (Operation ×Spine ×Σ×υ) 7→ unit
where appPolicy = C1 of ((C1 of ((C1 of

(PCPolicy⊗
∨D SEPolicy) o C2 )⊗
∨D LRPolicy) o C3 )⊗
∨D AppRBACPolicy) o C4

where AppRBACPolicy is the RBAC policy of some applica-
tion being part of the NPfIT. The coercion functions C1

= λ(a,b). a, C2 = λ(a,b,c). ((a,b) ,(a,b,c)), C3 = λ(a,b,c).
((a,b,c) ,a,c) and C4 = λ(a,b,c,d). ((a,b,c) ,(a,d)) serve to
a mere technical repackaging of the underlying state and in-
put formats involved in the composition. This policy can
then be combined with the previously combined two state
transitions as follows, where C5 = λa. (a,a):

definition app ST Policy :: (Operation ×Spine ×Σ×υ)
7→ (Output ×Spine ×Σ×υ)

where
app ST Policy = C1 of ((((appPolicy .A)⊗

∨A (∀Ax. ST Allow x)) o C5)⊕
(((appPolicy . D)⊗

∨A (∀Dx. ST Deny x))) o C5)

And, finally, transformed into a state transition monad:

definition appMon
where appMon = policy2MON app ST Policy

Possible usages of such a monad are described in the next
section.

5. SECURITY TESTING OF THE NPFIT
In this section, we discuss several test purposes and test

scenarios resulting in different test specifications and briefly
describe how the generated test cases can be used for testing
Web Service-based applications.

5.1 Test Specifications and Test Data
From an application perspective, we can distinguish two

types of test specifications, i. e. properties that the system
under test should fulfil: first, test specifications that en-
sure certain “quality criteria” of the modelled policy (e. g.
is the policy always defined) and, second, test specifications
that ensure that the applications conform to the policy and
are compliant to legal regulations such as the Caldicott Re-
port [32], or the NHS Confidentiality Code of Practice [16].

We start by generating test cases showing that our policy
meets some basic quality criteria. For example, for every
potential access X, the evaluation of the policy should give
a well-defined result, i. e. allow or deny:

¬(PUT X = None)

Applying hol-TestGen to this test specification results,
among others, in the following test data representing arbi-
trary attempts to access the system:

PUT((readEntry urp1 alice patient1 2),σ0) = Some(deny())

As an example for a scenario testing a critical situation,
we might want to validate that the personal GP of a patient
is always allowed to read his SCR.

[[UC u = Some urps u; urp u ∈ urps u; Sp patient = scr;
gp scr = u]] =⇒

Policy ((readSCR urp u patient),Sp,SC,UC) = Some(allow())

A similar scenario, but this time exploring not only a
single state transition but a sequence thereof, is that the
consent status of a patient who is at one point declared as
deceased should never be allowed to change, unless the pa-
tient is undeceased (i. e. his death status was an error) by
an earlier operation.

A policy specified in a wide range of formal and informal
documents, guidelines, etc. is prone to be underspecified
or to contain ambiguities. In the case of the NPfIT this has
already been observed before [6]. In such known cases, where
a policy specification can be interpreted in several ways, we
can create tests to check to which interpretation a specific
application conforms.

For example an early ambiguity detected by Becker [6] is
whether users are able to seal data they are not allowed to
read. We can test this property as follows:

[[ Policy ((readEntry u p e), spine , sc , uc) = Some (deny ())]]
=⇒PUT ( createSeal u p e s , spine , sc ,uc)= Some (deny ())

Generating test cases that ensure the compliance to stan-
dards and regulations like the principles from the Caldicott
Report [32] or stipulations such as a requirement that test
results can only be accessed after breaking a seal usually
require test specifications for sequence tests. The general
format of such sequence tests is:

σ0 |=os ←mbind is PolicyMonad; return (os=X) =⇒
σ0 |=os ←mbind is PUT; return (os = X)

meaning that if the formalised policy returns X beginning in
some state σ0, so should the program under test.

Often, such tests are too general and we need to limit the
possible inputs; e. g. consider the following test specification

[[users is ⊆{ urp1 alice , urp2 alice , urp john, urp bob};
σ0 |=os ←mbind is appMon; return (os = X)]] =⇒
σ0 |=os ←mbind is PUT; return (os = X)

which can be used to generate test data for the small ex-
ample introduced in Section 2.1.5. Here, only Alice, Bob
and John are allowed to perform an operation. This test
specification produces test data like the following:

σ0 |=os ←mbind [(readSCR urp john pablo),
(addToWG urp bob 1 {urp john}),
(readSCR urp john pablo)] PUT;

return (os = [(deny OutNo),(allow OutSuccess),
(allow (OutSCR SCR pablo))])

specifying the output that the PUT must produce when re-
ceiving the three operations in sequence (here, John is first
denied access to Pablo’s SCR, but is later allowed after Bob
has added him to the workgroup surgery).



Limiting the possible inputs allows for limiting the adver-
sary to special kinds of operations. As an example, we might
make the assumption that an attacker can only access the
system using a valid URP, reflecting measurements in place
which are not part of our models (e. g. access only possible
using smart cards).

5.2 Testing Web Services
hol-TestGen supports the generation of test-scripts (writ-

ten in SML) that allow for the automated testing of real
implementations (see [14]) for details). In its current form,
hol-TestGen only supports the automated testing of local
implementations, i. e. distributed services-based systems are
not supported. As modern distributed applications support,
in large parts, WSDL compliant Web Service interfaces, we
extended the test-script generation of hol-TestGen to sup-
port the testing of WSDL-compliant Web services using the
.net platform. In more detail, we
• ported the framework that executes the test-scrips to

F#, a member of the ML family that is supported by
the .net plattform.
• using the WSDL support of the .net plattform, we gen-

erated client libraries that allow to access the Web ser-
vices under test using F#.
• we ported the test-scripts generated by hol-TestGen

to F#. While this was done manually in our current
prototype, we see no difficulties in developing a test-
script generator that directly generates F#.

A simplified excerpt of the test-script testing a Web-service
in our small example (cf Section 2.1.5) looks as follows:

let _ = System.Console.Write("Test Case 38:")
let pre_38 = []
let post_38 = valid

((fun a -> a = [deny OutNo
allow OutSuccess
allow (OutSCR SCR pablo])), Unity)

(fun a -> mbind sendToWS
[readSCR urp john pablo
addToWG urp bob 1 {urp john}
readSCR urp john pablo])

let res_38 = HolTestGen.TestHarness.check
retlet pre_38 post_38

This setup paves the way for automated unit and sequence
tests of WSDL-compliant Web services with hol-TestGen.

6. CONCLUSION AND RELATED WORK

6.1 Related Work
With Barker [4], our Unified Policy Framework (UPF)

shares the observation that a broad range of access control
models can be reduced to a surprisingly small number of
primitives together with a set of combinators or relations to
build more complex policies. We also share the vision that
the semantics of access control models should be formally
defined. In contrast to [4], UPF uses higher-order constructs
and, more importantly, is geared towards machine support
for (formally) transforming policies and supporting model-
based test case generation approaches.

While there is a large body of literature adapting access
control models to the specific needs of health care systems
in general, e. g. [3, 5, 6, 19, 24], only a few (i. e. [5, 6, 19])
discuss the particular needs of the NHS in England.

On the modelling part, the closest related work is that
of Becker [5, 6], presenting a formal model of the Informa-
tion Governance (IG) policy using the authorisation policy
language Cassandra [7]. While his model does cover some
more details such as the management of credentials, it lacks,
compared with our model, a modular organisation. More-
over, the focus of this work is on the (efficient) enforcement
of policies and not on the generation of test cases for vali-
dating compliance of an implementation. Overall, we agree
with Becker that the requirements of NHS cannot be mod-
elled directly in traditional access control frameworks such
as RBAC [30] or Bell-LaPadula [8]. This is an instance of
a more general lesson; that real-world applications tend to
be loosely inspired by abstract frameworks rather than to
implement them faithfully. Finally, Eyers et al. [19] imple-
mented a NHS care record service that supports the runtime
enforcement of the RBAC-based sub-policies.

As regards testing, the closest related works are those of
Hu et al. [21], Martin and Xie [25] presenting a test case
generation approach (based on change-impact analysis, re-
spectively, mutation testing) for a subset of XACML [27] and
that of Hu and Ahn [20] presenting a conformance testing
approach for RBAC models using SAT solving techniques.
Traon et al. [33] present a conformance testing approach
that generates test cases for checking that an OrBAC [23]
policy (an extension of RBAC also modelling the organisa-
tional contexts) complies with high-level compliance goals.
Finally, there are several approaches, e. g. [22, 29], applying
combinatorial testing to RBAC models. All approaches have
in common that they consider only RBAC models or simple
extensions thereof. In contrast, we used a uniform frame-
work for security policies that is expressive enough to model
sophisticated real-world policies such as the ones of NPfIT.

6.2 Model-based Testing In The Real World
The work presented in this paper has reinforced our con-

viction that MBT tools have the potential to satisfy a gen-
uine practical need, in combination with complementary
techniques such as penetration testing. Compliance of health-
care applications with the NPfIT IG policy is a good example
of where model-based testing could usefully augment the IT
governance toolset:
• non-compliance has serious implications in terms of pa-

tient privacy and potentially safety, and may leave the
service and software providers exposed to prosecution
and litigation;
• the policy is complex, structured and subject to on-

going change;
• it applies to a range of application types from multiple

providers.
Combined, these properties mean that the sizable invest-

ment of time and money in building the model could plau-
sibly be justified in terms of mitigated risk, less problematic
introduction of the software into service, and improved user
experience.

However, building the model still requires specialised ex-
pertise, which remains a factor holding back the practical
application of MBT. To improve this situation, more re-
search in high-level graphical or textual languages and the
use of reusable patterns and templates for the UPF is re-
quired. Integration of MBT tools into mainstream software
development environments and testing suites would be a fur-
ther way forward to enable their commercial use.



6.3 Conclusion and Future Work
We have presented a uniform framework for modelling se-

curity policies. This might be regarded as merely an in-
teresting academic exercise in the art of abstraction, espe-
cially given the fact that underlying core concepts are logi-
cally equivalent, but presented remarkably different from—
apparently simple—security textbook formalisations. How-
ever, we have successfully used the framework to model fully
the large and complex information governance policy of a
national health-care record system as described in the offi-
cial documents (e. g. [17, 18]). Thus, we have shown the
framework being able to accommodate relatively conven-
tional RBAC mechanisms alongside less common ones such
as Legitimate Relationships. These security concepts are
modelled separately and combined into one global access
control mechanism. Moreover, we have shown the practi-
cal relevance of our model by using it in our test generation
system hol-TestGen, translating informal security require-
ments into formal test specifications to be processed to test
sequences for a distributed system consisting of applications
accessing a central record storage system.

Besides applying our framework to other access control
models, we plan to develop specific test case generation al-
gorithms. Such domain-specific algorithms allow, by exploit-
ing knowledge about the structure of access control models,
respectively the UPF, for a deeper exploration of the test
space. Finally, this results in an improved test coverage.
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