
Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Proof Support for IMP++ in HOL-OCL
Master Thesis

Lukas Brügger

Information Security
ETH Zürich

August 2, 2007

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Content

Introduction

Background

IMP++

Integrating IMP++ in HOL-OCL

Conclusion

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Overview

I There is a gap between verification on the specification level
and on the implementation level.

I We close this gap by extending HOL-OCL . . .

I . . . with a programming language semantics based on a
Hoare-calculus.

I All encodings are strongly typed

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Motivation

Node

Cnode
color: Boolean

next: Node

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Motivation

Node

Cnode

color: Boolean

next: Node

inv flip: self.color <> self.next.color

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Motivation

Node

Cnode

color: Boolean

next: Node

inv flip: self.color <> self.next.color

N1 := new Cnode();
N2 := new Cnode();
N1.set_color true;
N2.set_color false;
N1.set_next N2;
N2.set_next N1;
return N1;

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Motivation

Node

Cnode

color: Boolean

next: Node

inv flip: self.color <> self.next.color

N1 N2

T F

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Content

Introduction

Background

IMP++

Integrating IMP++ in HOL-OCL

Conclusion

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Background: HOL-OCL

HOL-OCL is an interactive proof environment for UML/OCL.

It provides:

I A datatype package for OO data structures

I A machine-checked semantics for OCL

I A proof calculi for a three-valued logic over path expressions

I A framework for analyzing OO specifications

Type constructor τ up: assigns to each type τ a type lifted by ⊥.

Missing: Programming language semantics. Therefore no program
verification.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Background: HOL-OCL

HOL-OCL is an interactive proof environment for UML/OCL.

It provides:

I A datatype package for OO data structures

I A machine-checked semantics for OCL

I A proof calculi for a three-valued logic over path expressions

I A framework for analyzing OO specifications

Type constructor τ up: assigns to each type τ a type lifted by ⊥.

Missing: Programming language semantics. Therefore no program
verification.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Background: Hoare Logic

Method for analysing programs with a small-step semantics. Main
construct is a Hoare Triple:

|={P} c {Q}

“if P holds for some state s and c terminates and reaches state t,
then Q must hold for t”

I P,Q are assertions. Modelled as set of states

I Denotational Semantics used for relating states and
commands

I Isabelle provides IMP: a Hoare calculus for an imperative
language

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Content

Introduction

Background

IMP++

Integrating IMP++ in HOL-OCL

Conclusion

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

IMP++
Motivation: Extend IMP by core features of object-orientation
(Java subset)
Deep embedding: Syntax is introduced as datatype definition:

datatype
α com =

SKIP
| Cmd α cmd
| Semi α com α com (;)
| Cond α bexp α com α com (IF THEN ELSE)
| While α bexp α com (WHILE DO)

types
α bexp = α state => bool up
α cmd = α state => α state up

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Hoare Logic for IMP++

Fairly standard, but with support for undefinedness.

States can always be undefined. Constant err denotes the error
state. Used for modelling exceptions.

types α assn = α state up => bool

constdefs
hoare valid :: [α assn, α com, α assn] => bool

|={P}c{Q} ≡∀ s t. (s , t) ∈ C(c) −−> P s −−> Q t

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Content

Introduction

Background

IMP++

Integrating IMP++ in HOL-OCL

Conclusion

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The HOL-OCL/IMP++ Architecture

Level 0

Level 1 IMP++Level 1 OCL

Level 2

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The HOL-OCL/IMP++ Architecture

Level 0

Level 1 IMP++Level 1 OCL

Level 2

Object Store

I Universe and class types

I Getters for the attributes

Can be reused for IMP++, extended with the Setters.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The HOL-OCL/IMP++ Architecture

Level 0

Level 1 IMP++Level 1 OCL

Level 2

Level 1:

I Lifting over the context of any semantic function

I Explicit dealing with definedness and strictness

I HOL-OCL provides types and operators to automate this

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The HOL-OCL/IMP++ Architecture

Level 0

Level 1 IMP++Level 1 OCL

Level 2

Level 1:

I The context of HOL-OCL is a pair of state (pre/post)

I The context of IMP++ is one state

−→ Definitions and lemmas can’t be reused

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The HOL-OCL/IMP++ Architecture

Level 0

Level 1 IMP++Level 1 OCL

Level 2

Level 2 adds support for preconditions, postconditions and
invariants.

Here we can relate the Hoare verification with the specification.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

State

The commands of our language are state transitions.
The state is a mapping from oids to the Universe with the
following constraints:

I NULL must not be a valid reference

I All elements in the range of the state must be defined

I There is a one-to-one correspondence between objects and
their oid (oid stored as part of the object)

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

State
The state is a mapping from oids to the Universe with the
following constraints:

constdefs correct state :: ”(oid ⇀ (’α U)) ⇒ bool”
” correct state σ ≡

(NULL /∈dom σ∧
(∀ obj ∈ ran σ.(level0 . oclLib . is OclAny univ obj −→

DEF(level0. oclLib .get OclAny obj)) ∧
(∀ oid ∈ dom σ. level0 . oclLib . is OclAny univ (the (σ oid)) −→

OclOidOf0(level0. oclLib .get OclAny (the (σ oid)))=oid))”

The state is defined as a type definition using this invariant.

Operators: access, create, update

Large library of lemmas for the state.
Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

SetColor

type: Cnode => bool => state => state up

consts l1 Cnode set color ::
” ((’a, ’b) state , ’a Cnode) VAL
⇒ ((’ a, ’b) state , bool up) VAL
⇒ (’a, ’b) state
⇒ (’a, ’b) state up”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

SetColor

type: Cnode => bool => state => state up

consts l1 Cnode set color ::
” ((’a, ’b) state , ’a Cnode) VAL
⇒ ((’ a, ’b) state , bool up) VAL
⇒ (’a, ’b) state
⇒ (’a, ’b) state up”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

SetColor

defs l1 Cnode set Color def :
” l1 Cnode set color self up c σ ≡

(let oid = (l1 OclOid self) σ in
let c0 = up c σ in
let self0 = access Cnode in state σ oid in

(if Cnode in state σ oid then
x(updext Cnode in state oid (base (Setcolor self0 c0)) σ)y
else ⊥))”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The commands of the language

Level 1 operators are:

I Setters

I update news

They all fit in the Cmd slot provided by IMP++.

Instead l1 Cnode set color N1 T σ we write
N1 .color := T, using syntax translation.

StackObject used for storing local variables.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Program in IMP++

generate cyclic List so ≡
so .n1 := New(Cnode) ;
so .n2 := New(Cnode);
so .cn1 . color := T;
(so .cn2) . color := F;
(so .n1) .next := (so .n2);
(so .n2) .next := (so .n1);
so . return := (so .n1)”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

lemma DEF set color:
”[[Cnode in state s (l1 OclOid self s)]] =⇒

DEF (l1 Cnode set color self foo s)”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

lemma DEF set color:
”[[Cnode in state s (l1 OclOid self s)]] =⇒

DEF (l1 Cnode set color self foo s)”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

lemma Cnode in state set color :
”[[Cnode in state s oid ; l1 OclOid self s = oid]] =⇒
Cnode in state p l1 Cnode set color self foo sq oid”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

lemma Cnode in state set color :
”[[Cnode in state s oid ; l1 OclOid self s = oid]] =⇒
Cnode in state p l1 Cnode set color self foo sq oid”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

I The value of a freshly set attribute

I The value of attributes which didn’t get updated

I Objects which won’t get updated remain the same

I The free memory

I Casting between class types

The library is developped in a modular way. They are/will be
created automatically by the encoder.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

I The value of a freshly set attribute

I The value of attributes which didn’t get updated

I Objects which won’t get updated remain the same

I The free memory

I Casting between class types

The library is developped in a modular way. They are/will be
created automatically by the encoder.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

I The value of a freshly set attribute

I The value of attributes which didn’t get updated

I Objects which won’t get updated remain the same

I The free memory

I Casting between class types

The library is developped in a modular way. They are/will be
created automatically by the encoder.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

I The value of a freshly set attribute

I The value of attributes which didn’t get updated

I Objects which won’t get updated remain the same

I The free memory

I Casting between class types

The library is developped in a modular way. They are/will be
created automatically by the encoder.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

I The value of a freshly set attribute

I The value of attributes which didn’t get updated

I Objects which won’t get updated remain the same

I The free memory

I Casting between class types

The library is developped in a modular way. They are/will be
created automatically by the encoder.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Calculus

Large library of lemmas about what happens during a state
transition:

I Definedness of expressions and objects

I Correct objects remain correct during an update

I The value of a freshly set attribute

I The value of attributes which didn’t get updated

I Objects which won’t get updated remain the same

I The free memory

I Casting between class types

The library is developped in a modular way. They are/will be
created automatically by the encoder.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Correctness Proof

|={λ σ. ¬(σ |=err) ∧ enough space for pσq 2 ∧
is handle for StackObject so so oid ∧
StackObject in state pσq so oid}

so .n1 := New(Cnode);
so .n2 := New(Cnode);
so .cn1 . color := T;
(so .cn2) . color := F;
(so .n1) .next := (so .n2);
(so .n2) .next := (so .n1);
so . return := (so .n1)

{λ σ. ¬(σ |=err) ∧ (Cnode inv (so . return) pσq)}”

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Correctness Proof

|={λ σ. ¬(σ |=err) ∧ enough space for pσq 2 ∧
is handle for StackObject so so oid ∧
StackObject in state pσq so oid}

generate cyclic list so
{λ σ. ¬(σ |=err) ∧ (Cnode inv (so . return) pσq)}”

I If we start in state which is not the error state, where there’s
enough memory for two more objects, and where we have a
StackObject of correct type, then

I after executing the method generate cyclic list on the
StackObject,

I we end in a state which is not the error state and where the
returned object satisfies the flip invariant.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Correctness Proof

|={λ σ. ¬(σ |=err) ∧ enough space for pσq 2 ∧
is handle for StackObject so so oid ∧
StackObject in state pσq so oid}

generate cyclic list so
{λ σ. ¬(σ |=err) ∧ (Cnode inv (so . return) pσq)}”

I If we start in state which is not the error state, where there’s
enough memory for two more objects, and where we have a
StackObject of correct type, then

I after executing the method generate cyclic list on the
StackObject,

I we end in a state which is not the error state and where the
returned object satisfies the flip invariant.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Correctness Proof

|={λ σ. ¬(σ |=err) ∧ enough space for pσq 2 ∧
is handle for StackObject so so oid ∧
StackObject in state pσq so oid}

generate cyclic list so
{λ σ. ¬(σ |=err) ∧ (Cnode inv (so . return) pσq)}”

I If we start in state which is not the error state, where there’s
enough memory for two more objects, and where we have a
StackObject of correct type, then

I after executing the method generate cyclic list on the
StackObject,

I we end in a state which is not the error state and where the
returned object satisfies the flip invariant.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

The Correctness Proof

|={λ σ. ¬(σ |=err) ∧ enough space for pσq 2 ∧
is handle for StackObject so so oid ∧
StackObject in state pσq so oid}

generate cyclic list so
{λ σ. ¬(σ |=err) ∧ (Cnode inv (so . return) pσq)}”

I If we start in state which is not the error state, where there’s
enough memory for two more objects, and where we have a
StackObject of correct type, then

I after executing the method generate cyclic list on the
StackObject,

I we end in a state which is not the error state and where the
returned object satisfies the flip invariant.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Proof Outline

I A sequence of applications of rule semi hoare, with explicit
instantiations

{A}c{B}; {B}d{C}
{A}c ; d{C}

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Proof Outline

I A sequence of applications of rule semi hoare, with explicit
instantiations

I Most lemmas of the library can safely be added to the
simplifier, which proves most subgoals

I Only few direct rule applications necessary

I Final step a little more difficult. Through application of weak
coinduction to several definedness expression and two
inequalities.

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Content

Introduction

Background

IMP++

Integrating IMP++ in HOL-OCL

Conclusion

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Conclusion

I We showed the feasability of a typed verification approach for
object-oriented programs

I Large library of lemmas and definitions provides relatively
efficient calculus for a Hoare logic

I Definition and lemmas are / will be created automatically by
the encoder

I Tight integration with HOL-OCL allows taking advantage of
the large library, and . . .

I . . . provides an integrated reasoning over object-oriented
specifications and programs

Lukas Brügger Proof Support for IMP++ in HOL-OCL

Introduction
Background

IMP++
Integrating IMP++ in HOL-OCL

Conclusion

Future Work

I Extend the encoder

I Support for method calls

I Verification Condition Generator

Lukas Brügger Proof Support for IMP++ in HOL-OCL

	Introduction
	Background
	IMP++
	Integrating IMP++ in HOL-OCL
	Conclusion

