
DKAL: Distributed-Knowledge Authorization Language

Yuri Gurevich
Microsoft Research
One Microsoft Way

Redmond, WA 98052
gurevich@microsoft.com

Itay Neeman∗

Department of Mathematics
University of California Los Angeles

Los Angeles, CA 90095-1555
ineeman@math.ucla.edu

Abstract

DKAL is a new declarative authorization language for
distributed systems. It is based on existential fixed-point
logic and is considerably more expressive than existing au-
thorization languages in the literature. Yet its query algo-
rithm is within the same bounds of computational complex-
ity as e.g. that of SecPAL. DKAL’s communication is tar-
geted which is beneficial for security and for liability pro-
tection. DKAL enables flexible use of functions; in par-
ticular principals can quote (to other principals) whatever
has been said to them. DKAL strengthens the trust delega-
tion mechanism of SecPAL. A novel information order con-
tributes to succinctness. DKAL introduces a semantic safety
condition that guarantees the termination of the query algo-
rithm.

1. Introduction

In an increasingly interconnected world, the authoriza-
tion policies grow more involved. Rights assigned and
maintained by an autonomous central authority give way to
rights that depend upon credentials issued by outside en-
tities that may rely upon credentials issued by yet other
entities. An authorization language should handle all that
in a secure, uniform and comprehensible way amenable to
analysis. It should facilitate policies that are more modular
and thus more stable in the changing environment.

Logic is a natural foundation for declarative authoriza-
tion languages. It allows one to write high-level policy rules
in a human-readable form. The resulting declarative policy
serves as a base, a legal manifesto of sorts, from which spe-
cific permissions are derived. And indeed many logic-based
authorization languages have been proposed. One of the lat-
est is SecPAL [5]; a quick review of preceding languages

∗Most of the work presented here was done when Neeman was a Visit-
ing Researcher at Microsoft Research.

is found in [5,§8]. Here we introduce Distributed Knowl-
edge Authorization Language, in short DKAL, conceived in
Fall 2006 when SecPAL appeared [4] and Itay Neeman first
visited Microsoft Research. Is there a need in another au-
thorization language? We believe so. Here are some of the
reasons.

1. There is a potential information leak problem in Sec-
PAL and all preceding languages. A naive dramatization
in Fig. 1 illustrates the problem in SecPAL terms. The de-
partment of Special Operations of some intelligence agency
appoints secret agents by assertions like S1. Bob, who is
just a receptionist, wants to find out who secret agents are.
He does not dare to pose that query (and suspects that the
system would not allow him to); instead he asserts S2 and
S3 where spot 97 is one of the parking spots over which he
has the authority, e.g. a visitor spot. It follows from S1 and
S2 thatBob says John Doe isSecrAgent. Now,
by posing an “innocent” query about who can park in spot
97, Bob gets a list of all secret agents. The problem can be
addressed on the level of implementation, for example by
attempting to separate confidential and non-confidential in-
formation (which is easier said than done; both may be nec-
essary to derive certain permissions), but the right way to
address the problem is at the authorization-language level.
DKAL solves the problem by making communication tar-
geted. The analog of the naive dramatization does not work
in DKAL as assertions like S1 would be targeted to an au-
dience that excludes Bob. See more on info leak in§4.

2. The expressivity of the existing languages is too lim-
ited. Consider for example nested quotations. They are
expressible in Speaks-For [1], which has expressivity lim-
itations of its own, but not in SecPAL and other Datalog
based languages. More generally, following Datalog, these
languages do not use functions in arguments of recursively
defined relations. Avoiding functions (if and when it is pos-
sible) can make policies more awkward and less natural. In
principle, Datalog with constraints can simulate such use of
functions (compare the two programs of§2) but this would
violate the feasibility restrictions of the languages in ques-

SpecialOperations says John Doe isSecrAgent (S1)

Bob says SpecialOperations can say p isSecrAgent (S2)

Bob says p canParkInSpot 97 if p isSecrAgent (S3)

Figure 1. Secret agent information leakage

tion. DKAL enables unrestricted use of functions that can
be nested and mixed while maintaining the computational
time bounds of SecPAL. (The decidability and complexity
issues are addressed in§9 and§10.)

3. One can make authorization rules more succinct by
partially ordering portions of information independentlyof
who possesses them.§7 is devoted to the information or-
der which is denoted≤; x ≤ y implies thaty is at least
as informative asx. The information order is defined re-
cursively. This recursion is powerful, which is especially
useful in the context of nested expressions. See for example
rule SaidMon in Fig. 5 which is a part of the definition of
the information order on quotations.

4. There is a better logical platform for authorization
languages than Datalog with or without constraints, namely
existential fixed-point logic (EFPL). We recall EFPL in§2.
We think also that knowledge is so important in authoriza-
tion theory that it should be made explicit.

DKAL addresses all these concerns. It is more expres-
sive than the languages in the literature. In§11 we give a
natural embedding of SecPAL, one of the most expressive
authorization languages to date, into DKAL.§9 and§10 are
devoted to a query evaluation algorithm for DKAL, with
the same time bounds as SecPAL’s query evaluation algo-
rithm. Before reaching those sections, we illustrate DKAL
by examples, define it precisely, and discuss various aspects
including targeted communication, the use of functions, the
information order, and DKAL’s mechanism for ensuring ter-
mination of the query evaluation algorithm in the presence
of functions. We discuss related work in§12, and we con-
clude in§13 with a summary and directions for future work.

Acknowledgements

We gratefully acknowledge collaboration with M. Parama-
sivam on earlier stages of the project, conversations with
Slava Kavsan, and comments of Moritz Becker, Nikolaj
Bjørner and Andreas Blass.

2. Existential fixed-point logic (EFPL)

We recall what EFPL is and introduce the sub-
strate/superstrate terminology. EFPL was introduced in [8]
and has an attractive model theory. A version of EFPL in

the form related to Constrained Logic Programming [17]
is given in [15, Appendix A]. That version is easy to in-
troduce to an audience familiar with logic programming in
the form of Datalog with Constraints [20] or Pure Prolog
[26]. In either case, a logic program is used to define ad-
ditional relations over a given first-order structure. In our
terminology, the given structure is thesubstrate structureor
just thesubstrate, and the new relations aresuperstrate re-
lations. In the Constraint Datalog case, the substrate is often
called the constraint domain [20]. In the Pure Prolog case,
the substrate includes a Herbrand universe with no built-in
relations, with the possible exception of equality; in addi-
tion, the substrate may have a limited number of additional
datatypes, e.g. integer arithmetic.

EFPL employs logic programs that can be defined as
generalized Constraint Datalog programs. First, we need
to remove the restriction on the use of function symbols. A
Datalog rule has the form:

R0(s1, . . . , sj) :– R1(t1, . . . , tk), R2(u1, . . . , uℓ), . . . , con

where the arguments of relation symbolsRi are variables
or constants and wherecon is a quantifier-free first-order
formula in the substrate vocabulary. EFPL allows the ar-
guments to be arbitrary expressions (a.k.a. terms) in the
substrate vocabulary. Second, in the literature, there areal-
ways limitations on the legal substrates of Constraint Data-
log which are imposed to guarantee good algorithmic prop-
erties of the legal substrates. For example, [20] requires
quantifier elimination. EFPL imposes no such limitations.

Alternatively, EFPL logic programs can be defined as
generalizations of Pure Prolog programs where a substrate
is an arbitrary first-order structure. In particular, the sub-
strate may have free constructors (like the functions of a
Herbrand universe) applied to regular elements, that is, ele-
ments that are not produced by means of free constructors.

In the sequel, logic programs are by default EFPL pro-
grams. A logic programΠ over a substrateX computes the
superstrate relations and thus produces an enriched struc-
tureΠ(X). This is clear ifΠ terminates overX. If Π does
not terminate overX, it still computes the superstrate rela-
tions. It just takes infinite time to do so. Fortunately, every
particular instance of a superstrate relation is computed at
a finite stage. In cases of interest in the rest of this paper,
the programs compute all relevant instances in finite time,

Chux: (Alice canDownload Article) to Alice (A1)

Alice: Best tdOn Alice canDownload Article (A2)

Best: (Chux tdOn p canDownload Article) to p (A3)

a knows x ← a knows p said x, a knows p tdOn x (C1)

a knows p tdOn (q tdOn x) ← a knows p tdOn x, a knows q exists
a knows p tdOn (q tdOn0 x) ← a knows p tdOn x, a knows q exists

(C2)

Alice knows Chux said Alice canDownload Article (K1)

Alice knows Best tdOn Alice canDownload Article (K2)

Alice knows Best said (Chux tdOn Alice canDownload Article) (K3)

Alice knows Chux exists (K4)

Alice knows Best tdOn (Chux tdOn Alice canDownload Article) (K5)

Alice knows Chux tdOn Alice canDownload Article (K6)

Alice knows Alice canDownload Article (K7)

Figure 2. User centric delegation example

so we need not worry about non-terminating computations.
For example, consider this simple logic program:

T (left(x), right(x))

T (right(x), left(y))← T (x, y)

T (x, z)← (T (x, y) ∧ T (y, z))

whereleft andright are substrate functions, andT is a
superstrate relation. If we assume that the two functions are
free constructors and that there is at least one substrate con-
stant, so that the corresponding Herbrand universe is well
defined, then our logic program is a Pure Prolog program.
In that case, the substrate is the infinite binary tree, and the
program computes a partial orderT that is the lexicographi-
cal order at every level of the tree. But the program is mean-
ingful without these additional assumptions.

As written, the example program is not a Constraint Dat-
alog program because the function symbols occur in rule
heads. Define Liberal Datalog as a Constraint Datalog with
no limitation on the legal substrates. The example program
reduces to the following Liberal Datalog program:

T (u,w)← u = left(x) ∧ w = right(x)

T (u,w)← T (x, y) ∧ u = right(x) ∧ w = left(y)

T (x, z)← T (x, y) ∧ T (y, z)

Furthermore, in a similar way, any EFPL program can be
transformed into a Liberal Datalog program.

In addition to logic programs, EFPL has queries. Queries
are first-order formulas, subject to some restrictions, in
the substrate vocabulary enriched with superstrate symbols.
Queries are evaluated not in a given substrateX, but in the
structureΠ(X) produced by the given logic programΠ over

the substrateX. The precise syntax of EFPL queries is im-
material here. DKAL queries are defined in§8.4.

As we mentioned already, there are different forms of
Constraint Datalog in the literature, distinguished by the
safety restrictions they place on programs to ensure ter-
mination. The form obtained from EFPL with the DKAL
safety conditions is new. We’ll say more on how DKAL
guarantees termination in§9.

3. A user centric example

DKAL’s syntax (vocabulary, rules, assertion forms) is
defined in§8. Here we begin introducing it gradually, by
examples. Since SecPAL is naturally translated into DKAL,
all the varied scenarios of [4, Section 5] are expressible in
DKAL. So we give examples of different kinds in this paper.
We start with a user-centric example, partially because we
believe that DKAL is particularly appropriate for the user
centric approach to authorization. We demonstrate the ba-
sics of DKAL, in particular how trust and delegation are
expressed.

Alice would like to download Article from Repository in
course of her work for Fabricam. Repository lets Fabricam
employees download content with no constraints. Fabricam
in turn requires that its employees respect intellectual prop-
erty. Fig. 2 shows how Alice verified her right to download
Article.

Alice bought the right at an online store Chux (an
allusion to Chuck’s). Chux told her that she can
download Article; this is represented by assertion A1
in Fig. 2. In the formal model we compute a su-
perstrate relationknows, and the assertion A1 leads

Chux: (a canDownload s) to a ← (A4)

a authorized $k to Chux for s, a hasPayRate Perfect, price(s) = k.

accounts.Chux: (Alice hasPayRate Perfect) to Chux (A5)

Chux: accounts.Chux tdOn a hasPayRate e (A6)

Chux: a tdOn (a authorized $k) to Chux for s (A7)

Alice: (Alice authorized $40 to Chux for Article) to Chux (A8)

Figure 3. Confidentiality example

to the instance K1 of that relation. The expression
Alice canDownload Article denotes aninfon, a
piece of information, and so doesChux said Alice
canDownload Article. The relationknows is of
type Principal× Info. Note that from assertion A1 Alice
learns only thatChux said Alice canDownload
Article, not thatAlice canDownload Article.

Alice noticed that the copyright for Article belongs to
Best Publishing House; hence the assertion A2 wheretdOn
stands foris trusted on. The expressionBest tdOn
Alice canDownload Article denotes yet another
infon, and assertion A2 leads to instance K2 ofknows in
the formal model.

The intended meaning ofp tdOn x is given by two rules.
One is C1 which states that a principala knowsx if she
knows that some principalp saidx and thatp is trusted on
x. We’ll get to the other rule shortly.

Unfortunately Alice does not know whether Chux can be
trusted onAlice canDownload Article, and Best,
who is trusted, did not say thatAlice canDownload
Article. So Alice cannot yet conclude that she is allowed
to download Article. Alice contacts Best who authorized
Chux to sell download rights to Article and who has in its
policy the assertion A3 (with a free, unconstrained variable
p). As a result Alice learns K3.

The infonp tdOn x expresses not only trust inp on x,
but also a permission forp to delegate the trust. (There
is a way to express non-delegatable trust, usingtdOn0 in-
stead oftdOn. The distinction betweentdOn andtdOn0

is inherited from SecPAL and will be addressed later.) The
right to delegate is captured by the double rule C2; only
the first line is relevant to the current example. Ifa knows
that p tdOn x and thatq exists then a knows thatp
is also trusted onq tdOn x, and this allowsp to delegate
the trust toq. The restriction thata knows (the existence)
of q is a safety condition that prevents the knowledge of
a from exploding with irrelevant details. We’ll say more
about the rule that leads to knowledge of infons of the form
q exists in §9; here it suffices to say that the rule applies
to K1 and results in K4.

Applying rules C1 and C2 to K1–K4, Alice obtains K5–

K7. Having deduced K7, Alice approaches Repository, and
downloads Article.

4. Info leak, and targeted communication

Recall the naive dramatization of the information leak-
age problem in§1. Let’s consider a slightly less naive ex-
ample. Modify the scenario of§3 by replacing assertion A1
with the assertions in Fig. 3. Chux compiles payment statis-
tics of customers and rates them. Customers rated “perfect”
get the download authorization immediately upon authoriz-
ing a proper payment to Chux, even before the funds are
received. The rating is managed by accounts.Chux. It is in-
tended that customers know nothing about the rating system
or their ratings or other customers’ ratings. Chux makes as-
sertion A4 with three conditions. A condition is an expres-
sion of type Info or a substrate constraint. In this case the
first two conditions are infon expressions, and the third is
a constraint using a substrate functionprice. Implicitly
the assertion has also safety conditions, addressed in§8.3
and§9, that restrict the ranges of variables; the safety con-
straints apply also to assertions A6 and A7. According to
assertion A5, accounts.Chux rated Alice “perfect”; note that
the assertion is targeted only to Chux. According to asser-
tions A6 and A7, Chux trusts accounts.Chux on payment
ratings and trusts the customers on payment authorization.
The price of Article is $40. When Alice decides to purchase
Article, she makes the assertion A8. Assertions A4–A8 lead
Chux to communicate the infonAlice canDownload
Article to Alice; as above Alice can proceed to verify
her right to download Article.

No infon of the formp hasPayRate R is commu-
nicated to Alice, and a probing attack such as the one
in Fig. 1 does not work. The DKAL parallel of S2
here is assertionAlice: accounts.Chux tdOn
p hasPayRate Perfect. The assertion is harm-
less, since A5 makes the infonaccounts.Chux said
Alice hasPayRate Perfect known only to Chux,
not to Alice. The confidentiality of pay ratings of other prin-
cipals is similarly protected.

The targeting of communication is beneficial also with
respect to liability. Suppose that an agencyA of stateS1

issues David a document, addressed toS1 wine shops, that
allows them to sell wine to David. If David buys alcohol
from a wine shop in stateS2 and if this violates the law of
S2, agencyA is not liable because it addressed the docu-
ments to wine shops inS1, not inS2.

Audience restrictions can be communicated by means of
SAML [27], see specifically [11,§2.5.1.4]. (The issue is ad-
dressed in the SecPAL implementation as well.) While the
audience restriction may be helpful with respect to liabil-
ity, the SAML audience field does not solve the problem in
Fig. 1. Indeed, if the factJohn Doe isSecrAgent is
modified with an audience restriction then all that Bob has
to do is to use the modified fact in S2.

In probing attacks of the kind illustrated in Fig. 1, prin-
cipals that are allowed to authorize some permissions lever-
age the authority to learn information they are not meant to
know. One way to thwart such probing attacks is to disal-
low conditional assertions by “outsiders” (like Bob), as in
Cassandra [6, 7], but this is too restrictive. One may fil-
ter out some conditional assertions on a case by case ba-
sis at the implementation level, but this ad-hoc approach
makes it hard to reason about security. Yet another way is
to compartmentalize facts to the extent possible and handle
requests using primarily the relevant compartment policy.
But there are limits to compartmentalization (unless you re-
ally have a union of essentially disjoint policies), principals
still can probe facts in their compartments, and the approach
does not make reasoning about security easy.

By targeting communication and separating knowing
from saying, DKAL solves the problem at the level of the
authorization language, so that information does not have to
be compartmentalized a priori, and conditional assertions
do not have to be filtered out. Of course DKAL does not
prevent information from leaking as a result of negligence.
For example, in the pay rate scenario, Chux may acciden-
tally target Bertha’s pay rating to Alice. But that is a very
different story.

5. Use of functions

In Datalog, with or without constraints, the symbols of
recursively defined relations are applied only to (tuples of)
variables and individual constants, and the (Constraint) Dat-
alog based authorization languages inherit the restriction
on the use of functions. In contrast, existential fixed-point
logic allows free use of function symbols, and EFPL based
DKAL makes intensive use of functions, both user-specific
and built-in. Function symbols routinely appear in the heads
of rules, and typically our functions are free constructors.
The flexible use of functions comes for a price. The proof of
program termination, let alone complexity proofs, becomes

much harder.

The built-in free-constructor functions includesaid
andtdOn. Functionsaid enables (possibly nested) quo-
tations in authorization policies, which leads to greater flex-
ibility in designing more modular policies. Suppose for ex-
ample that Chux (which appeared in Figures 1 and 2) has
several discount plans, and that employees of Fabricam par-
ticipate in discount plan 5X4302. To obtain the discount,
they must present a signed certificate from Fabricam stat-
ing that they are employees. Chux relies on a cryptographic
server Crypto to verify that the signed statements are au-
thentic. The system should be designed so that Crypto just
verifies authenticity. Crypto’s actions should not depend on
Chux’s policy on discounts, so that Chux’s policy could be
changed without requiring a change in Crypto’s behavior.

Chux makes a quotation assertion A9 in Fig. 4. Crypto
acts as a “dumb” server, merely decrypting the statements
it receives, and passing them on to Chux. Policy, for ex-
ample assertions A10 and A11, is the prerogative of Chux.
In this case, the end effect (of authorizing the discount
to Fabricam employees) could be achieved without quota-
tions. Chux could trust Crypto onq is an employee
of Fabricam, and Crypto in its own policy could trust
Fabricam on this. The issue here is not just achieving the
end effect, but the flexibility to concentrate the policy at
one place.

DKAL’s vocabulary may be extended by user-introduced
functions and relations. We already saw functionprice in
§4. Other typical user-introduced functions and relations re-
late to time, various directory structures, basic arithmetical
operations, etc. DKAL also permits user-introduced func-
tions that take attribute or infon values. To demonstrate
this, modify the confidentiality example above by replacing
assertions A7 and A8 with assertions A12–A14 in Fig. 4.
Chux does not simply accept infona authorized $k

to Chux for s from customera, but requires that the
infon comes with a certificate, signed usinga’s private key.
(Chux will need the certificate to obtain the funds from a
bank.)

We assume here a given (that is substrate) relation
authentic(a, x, c) meaning thatc is a certificate of in-
fon x signed with the private key ofa. Given an in-
fon x and stringc, function augm(x, c) (an allusion to
”augment”) produces a new infon. When Alice wishes
to purchase Article, she makes assertion A14, whereC

is a certificate of the infonAlice authorized $40
to Chux for Article, which Alice produced and
signed using her private key. Then, due to assertions A12
and A13,Chux knows Alice authorized $40 to
Chux for Article, and then, as in§4, Alice receives
an authorization to download Article.

Chux: Crypto tdOn r said q is an employee of r (A9)

Chux: Fabricam tdOn q is an employee of Fabricam (A10)

Chux: q can take discount 5X4302 ← q is an employee of Fabricam (A11)

Chux: a tdOn augm(a authorized $k to Chux for s, c) (A12)

Chux: a authorized $k to Chux for s ← (A13)

augm(a authorized $k to Chux for s, c),

authentic(a, a authorized $k to Chux for s, c)

Alice: augm(Alice authorized $40 to Chux for Article, C) to Chux (A14)

Chux: Crypto tdOn0 r said q is an employee of r (A15)

Crypto:0 (Fabricam said Chris is an employee of Fabricam) to Chux (A16)

a knows x ← a knows p said0 x, a knows p tdOn0 x (C3)

Chux knows Crypto said0 Fabricam said Chris is an employee of Fabricam (K8)

Chux knows Fabricam said Chris is an employee of Fabricam (K9)

Crypto:0 (r said q is an employee of r) to Chux ← (A17)

Crypto2 said r said q is an employee of r

Figure 4. Use of functions, and restricted delegation

6. Restricted delegation

One of the major advances of SecPAL [4] is the mecha-
nism of restricted delegation. We adapted that mechanism
to DKAL. DKAL has two kinds of infons expressing trust,
p tdOn x, andp tdOn0 x. The trust given by the former
is delegatable; the trust given by the latter is not. To illus-
trate the use of non-delegatable trust, replace assertion A9
in Fig. 4 with assertion A15 in Fig. 4. The new assertion
expresses non-delegatable trust in Crypto onr said q

is an employee of r. Suppose that Crypto is given
a signed certificate from Fabricam attesting that Chris is
a Fabricam employee. After authenticating the certificate,
Crypto produces assertion A16. The subscript0 in A16 sig-
nifies restricted communication; more on this in the next
paragraph. Assertion A16 leads to knowledge K8, with the
subscript0 on the first said. K8 and assertion A15 give K9
by means of rule C3.

The delegation rule C2 has delegatable trust assumed in
its body and cannot be applied to A16, so Crypto cannot
directly delegate the trust to others. He may attempt to
circumvent the prohibition, for example by placing asser-
tion A17. It seems that by saying the appropriate thing,
Crypto2 enables A16. But the attempt fails because asser-
tion A17 is restricted. The precise meaning of restricted
assertion involves relationknows0, read knows internally.
p knowsx internally if this follows from assertions placed
by p himself, with no dependence on assertions placed by
other principals. Restricted assertions can be conditioned

only upon internal knowledge (see the final paragraph on
§8.3) while A17 is based on communication from Crypto2
to Crypto.

We sometimes writeknows∞, said∞, andtdOn∞

for knows, said, andtdOn. The distinction between
knows∞ andsaid∞ on one side andknows0 andsaid0

on the other side is similar to SecPAL distinction between
AC,∞ |= A says x and AC, 0 |= A says x, and is used
here to the same effect, namely preventing principals from
circumventing non-delegatability. Delegations of arbitrary
bounded depth can be obtained by nestingtdOn0 in the
head of the assertion delegating the right. SecPAL exam-
ples on bounded depth delegation, see e.g. [5,§5] become
DKAL examples via the embedding of SecPAL into DKAL
explained in§11.

7. Information order

Rules C1–C3 have a common aspect: a principala

knows some infonx becausea knows some other infons
y1, . . . , yk. The information orderx ensues y (symboli-
cally x ≤ y) on infons extracts the common aspect. (We
resurrect the obsolete transitive meaning of ensue [28].)
Ideally, the meaning ofx ≤ y would be that all informa-
tion of x is present iny but this leads to undecidability.
The actual order is a constructive approximation of the ideal
one. The mediating rules KMon and KSum in Fig. 5 ex-
press the common aspect of C1–C3 and their counterparts
for knows0. Rule KMon states that knowledge ofx is a

a knowsd x ← a knowsd y, x ≤ y (KMon)

a knowsd x1 + x2 ← a knowsd x1, a knowsd x2 (KSum)

x ≤ p saidd x + p tdOnd x (TrustApp)

p tdOn (q tdOnd x) ≤ p tdOn x + q exists (Del)

p tdOn0 x ≤ p tdOn x (Trust0∞)

p saidd x ≤ p saidd y ← x ≤ y (SaidMon)

Figure 5. House Rules, part I

consequence of knowledge ofy if x ensuesy. Rule KSum
introduces infon addition operation of type Info×Info →
Info, and the rule states that knowledge ofx1 + x2 is a con-
sequence of knowledge of bothx1 andx2. Each of KMon
and KSum is adouble rule, with d ∈ {0,∞}. We use dou-
ble rule notation similarly below.

The content of rules C1 and C3 is now expressed suc-
cinctly by ensue double rule TrustApp. Similarly the con-
tent of rule C2 is expressed by ensue double rule Del. Rules
KMon–Del arehouse rulesof DKAL. Rules C1–C3 are not
house rules; they are consequences of house rules.

The inclusion of the information order allows creating a
rich structure of information with easily understood rules.
For example rule Trust0∞ expresses the fact that non-
delegatable trust is a consequence of delegatable trust. The
inclusion of the information order also allows for easily ex-
pressing strong quotation semantics. The deceptively sim-
ple rule SaidMon incorporates consequences of speeches
into the calculation of knowledge, so that, for example
p said q tdOn0 x ensuesp said q tdOn x. DKAL
thus has very strong semantics for quotations, computing
not only principals’ speeches, but also their implied conse-
quences. The rule could not be expressed as a single rule
without the information order .

8. The nuts and bolts

8.1. Substrate

Substrate and superstrate were mentioned already§2. In
DKAL, a substrate is a many-sorted structureX satisfying
certain requirements that we describe in this section. The
basic functions and relations ofX aresubstrate functions
andsubstrate relations. The structureX can be partial in the
sense that substrate functions can be partial. The possible
partiality results in some details that one has to be cautious
about. In this exposition, for simplicity, we ignore those
details; none of our results is compromised by that. The
vocabulary ofX, thesubstrate vocabulary, does not contain
any of the five superstrate relation symbols described in the

next subsection.
We assume that substrate functions and relations are

computable. More precisely, we assume that substrate el-
ements are (represented by) strings in a fixed alphabet and
that there is an algorithm Eval that evaluates substrate func-
tions and relations. Given a function nameF of arity
h and elementsa1, . . . , aj , Eval computesF (a1, . . . , aj).
We treat constants as nullary functions. Given a relation
nameR of arity j and elementsa1, . . . , aj , Eval determines
whetherR(a1, . . . , aj) is true or false.

The universe ofX splits into two sorts. One is Reg-
ular, with a subsort Principal and possibly other, user de-
fined, subsorts. Regular elements may be principals, time
moments, time intervals, files, directories, domain names,
etc. The other is Synthetic, with subsorts Attribute, Speech,
and Info. Functions with regular (resp. synthetic) values are
regular (resp. synthetic), and the same convention appliesto
variables and expressions in general. (Here and below, ex-
pressions are by default first-order expressions, that is, first-
order terms, in the substrate vocabulary.) Every synthetic
function is a free constructor, and every synthetic element
is constructed, in a unique way, from regular elements by
means of synthetic functions. Thesemantic treeof a sub-
strate elementb is the unique ordered finite tree rooted atb

and such that

• if b is regular then semtree(b) has no other nodes,

• if b = F (b1, . . . , bn) and functionF is synthetic
then there are exactlyn subtrees under the root:
semtree(b1), . . . , semtree(bn).

A substrate relationa regcomp b holds if and only ifa
is regular,b is synthetic, anda is a leaf of semtree(b). A
syntactic treeof an expressiont is the unique ordered finite
tree rooted att and such that

• if t is regular, then syntree(t) has no other nodes,

• if t = F (t1, . . . , tn) and function symbolF is syn-
thetic, then there are exactlyn subtrees under the root:
syntree(t1), . . . , syntree(tn).

Regular Sort ::= Regular | Principal | . . .
Synthetic Sort ::= Synthetic | Info | Speech | Attribute
Regular Function Symbol ::= . . .
Synthetic Function Symbol ::= saidd : Info→ Speech

| tdOnd : Info→ Attribute
| canActAs : Principal→ Attribute
| canSpeakAs : Principal→ Attribute
| + : Info× Info→ Info
| I : (Regular×Attribute) ∪ (Principal× Speech)→ Info
| exists : Attribute
| . . .

Substrate Relation Symbol ::= regcomp : Regular×Synthetic | . . .
Superstrate Relation Symbol ::= ensues : Info × Info

| knowsd : Principal×Info
| saystod : Principal×Info×Principal

Figure 6. DKAL vocabulary

A subexpressions of t is a regular componentof t if s is
regular,t is synthetic, ands is a leaf of syntree(t).

The substrate always has the following synthetic
functions called house constructors: unary functions
said, said0, tdOn, tdOn0, canActAs,
canSpeakAs, binary functions+ and I, and a con-
stantexists; Fig. 6 gives their types.

Convention8.1. Function symbolssaid and tdOn can
be written assaid∞ and tdOn∞ respectively. Thus
saidd denotessaid whend = ∞ and denotessaid0

when d = 0, and similarly fortdOnd. In the case of
functionssaidd, tdOnd, canActAs andcanSpeakAs,
we write the function name of the house constructor fol-
lowed by the argument, with no parentheses. For example,
canActAs Bob is the attribute obtained by applying the
functioncanActAs to the constantBob. We writex + y

instead of+(x, y). In the case of the functionI we gen-
erally omit the function name altogether writing justBob
is a user rather thanI(Bob, is a user). For ex-
ample, the full version of double rule TrustApp in Fig. 5
is

x ≤ +
(

I(p,said(x)), I(p,tdOn(x))
)

x ≤ +
(

I(p,said0(x)) + I(p,tdOn0(x))
)

The functionscanActAs andcanSpeakAs may be
used for assignment of roles; their precise meaning is given
by house rule Role in Fig. 7. To give a quick example, if it
is known thatp canActAs Director, andDirector
canRead foo, then it follows thatp canRead foo. In
the other direction, if it is known thatp canSpeakAs

Director, andp said A isHired, then it follows that
Director said A isHired. Uses of the other house
functions have been demonstrated in earlier sections.

The substrate may have user-introduced regular func-
tions and relations. It may have user-introduced synthetic
functions with values of type Attribute or Info. The only
functions with values of type Speech are house constructors
said andsaid0.

Remark 8.2. A priori, one may expect thatsaidd

and tdOnd are relation of type Principal× Info,
and canActAs, canSpeakAs are relations of type
Principal× Principal. Why do we treat them as functions?
First, there is a substantial increase of the expressivity of the
language. Contrary to relations, functions can be nested. In
particular, we can express quotations, likep said q said
x. Second, DKAL communication is targeted. What would
a propositionp said x mean? Who’s the target of that
communication? Third, there is in general no central au-
thority in a distributed situation. What would a proposition
p tdOn x mean? Who trustsp on x? From our point of
view, phrases likep said x are infons, not propositions.
We will revisit the issue in Remark 8.4.

8.2. Superstrate

There are five superstrate relations:says, knows,
knows0, saysto and saysto0; Fig. 6 gives their
types. Againd ∈ {0,∞} and subscript∞ may be omit-
ted. We writep knowsd x instead ofknowsd(p, x), and
p saysd x to q instead ofsaystod(p, x, q). We writex

ensues y or x ≤ y instead ofensue(x, y). (This use of
the≤ symbol is a mere convenience and does not preclude
the use of the symbol in the substrate.)

p knows q saidd x ← q saysd x to p (Say2know)

p knows x ← p knows0 x (K0∞)

x ≤ x (EOrder)

x ≤ z ← x ≤ y, y ≤ z

x ≤ x + y (ESum)

y ≤ x + y

x + y ≤ z ← x ≤ z, y ≤ z

t exists ≤ x ← t regcomp x (Exists)

p said x ≤ p said0 x (Said0∞)

p saidd (x + y) ≤ p saidd x + p saidd y (SaidSum)

p saidd x ≤ p saidd p saidd x (SelfQuote)

p tdOnd x ≤ p tdOnd p tdOnd x (Del−)

p attribute≤ q attribute+ p canActAs q (Role)

q speech≤ p speech+ p canSpeakAs q

Figure 7. House Rules, part II

Remark8.3. One can develop DKAL without relations
knowsd, representingp knowsd x with p saysd x to
p. We choose to make knowledge explicit because of the
fundamental role of knowledge and because the separation
of knowing and saying is convenient technically as well.

The superstrate relations are computed over the substrate
by the logic program that consists of the house rules in Fig-
ures 5 and 7 as well as of the rules given by assertions placed
by principals. Assertions forms and the rules that assertions
give rise to are described in the next subsection.

Remark8.4. In Remark 8.2, we gave some reasons for mak-
ing constructssaidd, tdOnd, etc. functions and thus
“pushing” them into the substrate. Having these constructs
as substrate functions has one additional advantage. By
means of house rules, we can impose natural axioms on
these constructs. But one has to be careful if one is de-
termined to keep query evaluation terminating and feasible.

8.3. Assertions

There are two forms of DKAL assertions:

1. A :d x ← x1, . . . , xn, con,

2. A :d x to p ← x1, . . . , xn, con.

HereA in both forms is a ground principal expression de-
noting theownerof the assertion;d is either∞ or 0, and
∞ is typically omitted;x, x1, . . . , xn are infon expressions;
andcon is a substrate constraint, that is a conjunction of
possibly-negated atomic formulas in the substrate vocabu-
lary. All variables are regular, that is of type Regular;p is

a principal variable called thetarget variable. Assertion 1
is aknowledge assertion. It does not have a target variable,
and it gives rise to rule

A knowsd x←

A knowsd x1,...,A knowsd xn,

A knowsd t1 exists,...,

A knowsd tk exists, con

where the list t1, . . . , tk consists of the variables in
x, x1, . . . , xn, con and of the non-ground regular compo-
nents of assertion headx. Since the rule contains the con-
ditionsA knowsd ti exists, we say thatt1, . . . , tk are
A-boundedin the assertion. Assertion 2 is aspeech asser-
tion and gives rise to rule

A saysd x to p←

A knowsd x1, ..., A knowsd xn,

A knowsd t1 exists, . . . ,

A knowsd tk exists, con

where the listt1, . . . , tk consists of the variables of the as-
sertion and the non-ground regular components of the as-
sertion headx, with the exception of the target variablep.

Semantically there is no difference between an assertion
and the rule that it gives rise to. The difference is purely
syntactical. Assertions provide simpler and more conve-
nient way to write rules.

Note that any assertion rule conditions its head only on
the knowledge of the assertion owner possibly augmented

with a substrate constraint; this is key in dealing with the in-
formation leakage problem in§4. In cased = 0, the knowl-
edge is internal; that property, inherited from SecPAL, is
key in delegation restriction§6.

8.4. Queries

Fix a substrateX and letΥ be the vocabulary ofX ex-
tended with the superstrate relation names. Further, con-
sider an authorization policy (that is a set of assertions)A
in the vocabularyΥ. Let Π be the logic program that con-
sists of the house rules and the assertions inA. And let
Π(X) be thestate of knowledgedetermined byX andΠ,
that is the enrichment ofX by means of superstrate rela-
tions computed byΠ overX.

A basic query in vocabulary Υ is a formula
p knowsd t(v1, . . . , vk) wherep is a ground principal ex-
pression in the substrate vocabulary,t is an infon expression
with variablesv1, . . . , vk, the variables are all regular, and
d is 0 or∞. The query is evaluated over the state of knowl-
edgeΠ(X). Theansweris the set of tuples〈b1, . . . , bk〉 of
regular elements ofX such that the type ofbi is that ofvi

and

Π(X) |= p knowsd t(b1, . . . , bk) ∧

p knowsd b1 exists ∧ · · · ∧

p knowsd bk exists.

For any ground principal expressionp, ap-centric query
is a first-order formula. We definep-centric queries induc-
tively.

1. Every substrate constraint is ap-centric query.

2. Every basic queryp knowsd t(v1, . . . , vk) is p-
centric.

3. If Q1 andQ2 arep-centric queries then so are
¬Q1, Q1 ∧Q2 andQ1 ∨Q2.

4. If Q(v) is ap-centric query then so are formulas
∃v

(

(p knows v exists) ∧ Q(v)
)

,
∀v

(

(p knows v exists) −→ Q(v)
)

.

It follows that all quantifications in ap-centric query are
restricted to elements known top. Theanswerto ap-centric
query is defined by induction, in the obvious way.

In particular, a Boolean combination of substrate con-
straints andp-centric basic queries is ap-centric query. The
availability of negations in queries can be used for conflict
resolution at the decision point. For example, in a deny-
override system, with read guard RG, read access to File 13
would be given to the users in the answer to the query:
RG knows p hasReadAccessTo File 13 ∧
¬

(

RG knows p deniedAccessTo File 13
)

.
In this paper, aquery, that is DKAL query, is ap-centric

query for somep.

9. Query evaluation

The flexible use of functions makes DKAL closer to Pro-
log than to Datalog. It is of course only too easy to write
a non-terminating program in Prolog. But DKAL is care-
fully calibrated to ensure the termination of an algorithm
that computes answers to queries.

Recall that state elements split into regular and synthetic.
In policy assertions, variables range over regular elements
only. Further, consider any assertionα, and letA be the
owner ofα andt be a variable inα or a non-ground regu-
lar component ofα’s head. Unlessα is a speech assertion
andt is the target variable, we require thatα contains con-
dition A knowsd t exists for the appropriated; see 8.3.
In particular all non-target variables ofα’s head occur in the
body. Also, for the purpose of evaluating the body ofα, the
relevant values of non-target variables are those whose ex-
istence is known toA. The requirement is a semantic safety
condition that prevents the knowledge ofA from exploding.

The infont exists carries no information aboutt ex-
cept thatt exists. See rule Exists in Fig. 7 in this connec-
tion. Relationregcomp was defined in§8.1. The intuitive
meaning of relationt regcomp x is thatt appears inx in
an essential way. By rule Exists, infont exists is the
least informative among infons that mentiont in an essen-
tial way.

The semantic safety condition allows us to show that
only the regular elements that are explicitly mentioned in
the policy are relevant and need to be considered as possi-
ble values for variables when evaluating the policy. Since
the policy is finite, the number of relevant regular elements
is finite.

Things are much more involved with synthetic elements.
While assertions have only regular variables, many house
rules of DKAL have variables ranging over synthetic ele-
ments, in particular over infons. We prove that the number
of synthetic elements needed to evaluate a given query un-
der a given policy is finite. The proof is elaborate and uses
the nature of the DKAL house rules; it is written in full de-
tails in the technical report [15].

We construct a query evaluation algorithm that takes ad-
vantage of the fact that only finitely many regular and syn-
thetic elements are relevant.

Theorem 9.1. For any substrateX, given an authorization
policyA overX and a queryQ, the DKAL query evaluation
algorithm computes the answer toQ underA andX.

The proof is elaborate and long, even for an appendix of
an extended abstract. It is written in full details in the tech-
nical report [15]. Fortunately one does not need to know the
proof in order to use the algorithm. Note that the answer is
always finite.

10. Worst case complexity

Fix a substrateX. To simplify the complexity analysis
of the query evaluation algorithm, we assume that the al-
gorithm Eval of§8.1 works in constant time: given a func-
tion or relation symbolS and the appropriate tuplēa of the
elements ofX, Eval evaluatesS(ā) in constant time. Es-
sentially we count only the number of Eval calls and ignore
Eval’s computation time. Alternatively we could make a
natural assumption that Eval works in time bounded by a
polynomial of the maximal length of an input string. That
polynomial would have to be taken into account in the fol-
lowing theorem but would not affect our results in any es-
sential way. The analysis of Eval is orthogonal to the main
issue of this theorem.

If β is an assertion or a query, then thequotation depthof
β is the depth to whichsaid andsaid0 (possibly mixed)
are nested inβ, and thewidthof β is the number of variables
in β. Note that the width is zero in the ubiquitous case of
basic yes/no queries.

Theorem 10.1. The time that the query evaluation algo-
rithm needs to answer a queryQ under an authorization
policyA is bounded by a polynomial in

(length(A) + length(Q))δ+1+w,

whereδ (resp. w) bounds the quotation depth (resp. the
width) of the policy assertions and of the query. In the im-
portant case whereδ andw are fixed, the computation time
is polynomial inlength(A) + length(Q).

A detailed proof is found in the technical report [15].
The time bound can be sharpened but the importance of the
worst case need not be exaggerated. Typical cases seem to
be much different.

11. SecPAL to DKAL translation

In this section, SecPAL is the language defined in [4, 5]
and not an implementation of the language. We presume,
without loss of generality, that the names of sorts, functions
and relations introduced explicitly in§8 do not occur in Sec-
PAL.

We describe a natural translationτ of SecPAL into a ver-
sion of DKAL, called Open DKAL, obtained by augment-
ing DKAL with double rules

p saysd x← p knowsd x (O1)

p knowsd x← p saysd x (O2)

Here p saysd x is an Open DKAL abbreviation for
p saysd x to q whereq is any fresh variable. O1 re-
flects the all-knowledge-is-common nature of SecPAL. O2

is a mere convenience; it allows us to translate SecPAL’s
says by DKAL’s says rather than by DKAL’sknows. In
the rest of this section, by default, DKAL is Open DKAL.

Let CD be a constraint domain of SecPAL. We view CD
as a first-order structure. We turn CD into a DKAL substrate
X whose regular elements are precisely the elements of CD.
X extends CD in two ways, by expanding the vocabulary
and adding synthetic elements. We defineτN = N for
every name in the CD vocabulary.X has the built-in DKAL
functions. In addition, for each SecPAL predicatepred, X

has a synthetic function, also denotedpred, taking attribute
values; the domain of the new functionpred is the domain
of the original SecPAL predicatepred. X has no other sorts,
functions or relations.

Fig. 8 completes the definition of the translationτ . The
lines in the figure correspond to the SecPAL grammar [4].
In the final line, tagged Assertion,all is a fresh variable not
occurring in the assertion, andd takes values0,∞. Sec-
PAL verbphrases become DKAL attributes, SecPAL facts
become DKAL infons, and each SecPAL assertion gives
rise to two DKAL assertions, one withd = 0 and the other
with d =∞. In SecPAL, an assertion context AC is a set of
assertions. Accordingly an assertion context AC composed
of n SecPAL assertions gives rise to a DKAL policyτ(AC)
composed of2n assertions.

Theorem 11.1(Embedding Theorem). Let AC be a safe
SecPAL assertion context, and letΠ be the logic program
composed of the policyτ(AC) and the Open DKAL house
rules. If

AC, d ⊢ A says f

in SecPAL, whereA is a principal constant,f is a ground
flat fact expression, andd ∈ {0,∞}, then

Π(Sub) |= A saysd τf

in Open DKAL

Remark11.2. It is possible to translate SecPAL to the origi-
nal DKAL rather than Open DKAL. We mentioned already
that double rule O2 is not essential for translation. The nec-
essary instances of double rule O1 can be incorporated into
the translation of SecPAL assertions. In SecPAL, a fact is
flat when it does not containcan say, and every factf has
the forme1 can sayd1

. . . en can saydn
g wheren ≥

0 andg is flat. We refer tog as theflat seedof f . We refer to
each of the factsek+1 can saydk+1

. . . en can saydn

g, 0 ≤ k ≤ n, as asubfactof f . To translate into the orig-
inal DKAL, defineτ(A says f if f1, . . . , fn, con) to
be the set of the following DKAL assertions, instead of the
ones at Assertion in Fig. 8:

Ad : τ(f) ← τ(f1), . . . , τ(fn), con

Ad : τ(f ′) to all ← τ(f ′)

τ(e) = e (Variable, constant)

τ(con) = con (Constraint)

τ(pred) = pred (Predicate)

τ(pred e1 . . . en) = pred(e1, . . . , en) (Verbphrase)

τ(can sayd fact) = tdOnd τ(fact)

τ(can act as e) = canActAs e

τ(e verbphrase) = I(e, τ(verbphrase)) = e τ(verbphrase) (Fact)

τ(A says fact if fact1, . . . , factn, con) = A :d τ(fact) to all ← τ(fact1), . . . , τ(factn), con (Assertion)

Figure 8. The SecPAL-2-DKAL translation map τ

wheref ′ ranges over the subfacts off . The obvious analog
of the embedding theorem holds but the proof is a bit more
involved.

Proposition 11.3. The converse of the embedding the-
orem is not true. There is an assertion context AC
and a SecPAL queryA says f such thatΠ(Sub) |=
A says τ(f) but AC,∞ 6⊢ A says f .

If one weakens DKAL by removing rules Del and Del−,
then the embedding theorem survives and its converse holds
too. We do not see Proposition 11.3 as a drawback of Open
DKAL. Moreover, it is advantageous if more justified re-
quests get positive answers. Note also that only justified
requests get positive answers in SecPAL, DKAL and Open
DKAL, and that Open DKAL justifications are every bit as
convincing as those of SecPAL.

One may wonder why the rules Del− and Del are in
DKAL in the first place. The question is natural in the con-
text of SecPAL and Open DKAL. The small additional ex-
pressivity may not justify the two rules. But the situation is
different in DKAL proper. The open character of SecPAL
makes delegation easy. Ifp says q can say x and if q
says x thenp says x. This is elegant and simple. But it
also opens too large a venue forp to find out (possibly using
a probing attack) whatq says. Targeted communication and
confidentiality complicate delegation in a substantial way.
It should be possible to exercise the delegated authority in
such a way that the delegator is not involved and cannot dis-
cover by probing whether the delegated authority was ex-
ercised and by whom. Del naturally captures the intuitive
meaning of the delegatability of trust. The other rule, Del−,
is a minor issue.

12. Related work

The literature on the use of logic in authorization policies
for decentralized system is too rich to be fairly reviewed in

few paragraphs. We concentrate mostly on recent work that
is more closely related to this paper.

Speaks-For Calculus [1] pioneered the use of logic (a
form of modal logic in the Speaks-For case). In particu-
lar Speaks-For addressed delegation and representation, and
introduced thesays construct that, in one form or another,
has been popular in authorization literature ever since. Dat-
alog possibly with constraints [20] was the foundation for
many later logic-based authorization languages. DKAL res-
urrected an attraction of Speaks-For absent in the existing
Datalog based literature (as far as we know): nested quota-
tions.

The term “trust management” was coined in [9]. The
article introduced PolicyMaker that later evolved into
KeyNote [10]. KeyNote expresses involved scenarios. In
particular, it allows a principal to delegate a subset of his
rights to another principal, and it has thresholds. But
there are common authorization scenarios that cannot be ex-
pressed in KeyNote. Typically they involve a right granted
on the basis of an attribute that originates from a lateral
source; see the introduction to [19] in this connection.

Our late genealogy consists primarily of Datalog based
languages Binder [12], Delegation Logic [18, 19] and Sec-
PAL [5, 13]. Binder [12] extends Datalog with an im-
port/export constructsays that connects Datalog pro-
grams maintained by different principals and makes the
issuer of an imported assertion explicit. A principalA

may for example condition a Datalog rule onB says
employee(C,E). The rule will fire when principal
B exportsemployee(C,E). A may express his trust
in B on employee(x, y) by means of a Datalog rule
employee(x, y) :- B says employee(x, y). Re-
cently the import and export aspects of Binder’ssayswere
separated in SeNDlog [2]. This useful advance, inspired by
a database query language NDlog [23], and DKAL’s tar-
geted communication attend to the same concern but were
independent.

Delegation Logic features vocabulary specifically de-

signed for authorization policies. Contrary to Binder, it does
not have explicit issuers for all assertions. But it has a num-
ber of useful, authorization specific constructs, including
ones for delegations, representations, and thresholds. For
the purpose of execution, Delegation Logic is reduced to
Datalog.

SecPAL has both explicit issuers of assertions and spe-
cific constructs designed with distributed systems autho-
rization policy in mind. The number of constructs is de-
liberately kept low, but the language is expressive and cap-
tures many standard authorization scenarios, including dis-
cretionary and mandatory access control, role hierarchies,
separation of duties, threshold-constrained trust, attribute-
based delegation, and delegation controlled by constraints,
depth, and width, see [5, Section 5]. The semantics of the
language is defined directly, using a few very condensed
deduction rules. For the purpose of execution, SecPAL is
reduced to Datalog with constraints. Nestedcan say0

facts are used for bounded depth delegation, and the Sec-
PAL deduction laws give rise to semantics that prevents any
circumventing of the delegation bound.

While its authors see SecPAL as Datalog based [3], we
find it more illuminating to see SecPAL from the point of
view of existential fixed-point logic sketched in§2. From
that point of view,can say (a.k.a.can say∞) andcan
say0 are fact-valued functions that can be nested in Sec-
PAL. SecPAL policies are reduced to safe Constraint Data-
log programs by converting nestedcan sayd facts to rela-
tions of arity dependent on the nesting depth, which is finite
in any given policy and can only decrease in deductions.

The RT family languages [21] are also Datalog based.
The languages have roles instead of attributes, and princi-
pals may condition membership in a role they control on
membership in roles controlled by other principals. Both
RT and SecPAL extend Datalog with constraints. In RT
tractability with constraints is obtained by assuming thatthe
constraint domain satisfies quantifier elimination. SecPAL
uses instead a syntactic safety condition that guarantees that
constraint variables are instantiated at the time of evalua-
tion.

13. Conclusion and future work

We designed an authorization language DKAL which ex-
ceeds the expressivity of previous languages in the literature
in a number of ways and yet maintains feasible complex-
ity bounds for answering authorization queries. The lan-
guage has several innovative features including these: tar-
geted communication and a distinction between knowing
and saying; quotations that can be nested and, more gen-
erally, flexible formation of expressions with unrestricted
use of functions that can be nested and mixed; extended
use of an underlying substrate structure that may be very

rich; stronger delegation semantics; and an information or-
der that makes the language more succinct and comprehen-
sible.

Policies written in SecPAL [5], a recent expressive au-
thorization language, can be translated into DKAL, and so
all SecPAL expressible authorization scenarios are also ex-
pressible in DKAL. We attempted to illustrate the useful-
ness of the new features of DKAL for user-centric scenar-
ios, prevention of information leakage, abstraction of cryp-
tographic protocols, and design of more modular distributed
authorization policies. Our algorithm for answering DKAL
queries has worst-time complexity within the SecPAL time
complexity bounds.

The DKAL query answering algorithm is currently im-
plemented in Prolog. We work toward more substantial im-
plementation and future deployment of DKAL. There are
several appetizing directions to expand DKAL. One is to
develop syntax and semantics for targeting assertions. Cur-
rently only targeting of infons is expressible in DKAL. An-
other direction is related to house rules. One may want to
enrich them with additional ensue rules. The problem is to
understand which ensue rules can be added without violat-
ing the time complexity results. Yet another direction is to
allow the policies to use negation in a stratified way.

References

[1] Martı́n Abadi, Michael Burrows, Butler Lampson, and
Gordon Plotkin, “A Calculus for Access Control in
Distributed Systems,” ACM Transactions on Program-
ming Languages and Systems, 15:4, 706–734, 1993.

[2] Martı́n Abadi and Boon Thau Loo, “Towards a Declar-
ative Language and System for Secure Networking”,
in International Workshop on Networking Meets Data-
bases (NetDB ’07), 2007.

[3] Private communication, January 2008.

[4] Moritz Y. Becker, Ćedric Fournet and Andrew D. Gor-
don, “SecPAL: Design and Semantics of a Decen-
tralized Authorization Language”, Technical Report
MSR-TR-2006-120, Microsoft Research, September
2006.

[5] Moritz Y. Becker, Ćedric Fournet and Andrew D. Gor-
don, “SecPAL: Design and Semantics of a Decetral-
ized Authorization Language”, 20th IEEE Computer
Security Foundations Symposium (CSF), 3–15, 2007.

[6] Moritz Y. Becker and Peter Sewell, “Cassandra: Dis-
tributed Access Control Policies with Tunable Ex-
pressiveness”, in IEEE 5th International Workshop on
Policies for Distributed Systems and Networks, 159-
168, 2004.

[7] Moritz Y. Becker and Peter Sewell, “Cassandra: Flex-
ible Trust Management, Applied to Electronic Health
Records”, in IEEE Computer Security Foundations
Workshop, 139-154, 2004.

[8] Andreas Blass and Yuri Gurevich, “Existential
Fixed-Point Logic”, Springer Lecture Notes in
Computer Science 270 (1987), 20–36. Available
at http://research.microsoft.com/
∼gurevich/Opera/73.pdf.

[9] Matt Blaze, and Joan Feigenbaum, and Jack Lacy,
“Decentralized Trust Management”, in Proc. 1996
IEEE Symposium on Security and Privacy, 164–173,
1996.

[10] Matt Blaze, Joan Feigenbaum, Angelos D. Keromytis,
“The Role of Trust Management in Distributed Sys-
tems Security”, in Secure Internet Programming, 185–
210, 1999.

[11] S. Cantor, J. Kemp, R. Philpott, and E. Maler,
“Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V2.0”, OASIS
Standard saml-core-2.0-os, March 2005.http:
//docs.oasis-open.org/security/
saml/v2.0/saml-core-2.0-os.pdf.

[12] John DeTreville, “Binder, a Logic-Based Security
Language”, in IEEE Symposium on Security and Pri-
vacy, 105-113, 2002.

[13] Blair Dillaway, “A Unified Approach to Trust, Delega-
tion, and Authorization in Large-Scale Grids,” Techni-
cal Paper, Microsoft Corporation, September 2006.

[14] Herbert Enderton, “A Mathematical Introduction to
Logic”, 2nd edition, Academic Press.

[15] Yuri Gurevich and Itay Neeman, “DKAL: Distrib-
uted Knowledge Authorization Language”, MSR-TR-
2007-116 (August 2007) and MSR-TR-2008-09 (Jan-
uary 2008 Revision), Microsoft Research.

[16] Wilfrid Hodges, “Model Theory”, Cambridge Univer-
sity Press, 1993.

[17] Joxan Jaffar and Michael J. Maher, “Constraint logic
programming: A survey,” Journal of Logic Program-
ming 19/20 (1994), 503-580.

[18] Ninghui Li, “Delegation Logic: A Logic-Based Ap-
proach to Distributed Authorization”, Ph.D. thesis,
New York University, September 2000.

[19] Ninghui Li, Benjamin N. Grosof and Joan Feigen-
baum, “Delegation Logic: A Logic-Based Approach

to Distributed Authorization”, ACM Trans. on Infor-
mation and System Security (TISSEC) 6:1 (February
2003), 128–171.

[20] Ninghui Li and John C. Mitchell, “Datalog with Con-
straints: A Foundation for Trust Management Lan-
guages”, PADL 2003, V. Dahl and P. Wadler (Eds.),
LNCS 2562, 58–73, 2003.

[21] Ninghui Li and John C. Mitchell, “RT: A Role-Based
Trust-Management Framework”, in Proceedings of
the Third DARPA Information Survivability Confer-
ence and Exposition (DISCEX III), 201–212, April
2003.

[22] Ninghui Li, William H. Winsborough, and John C.
Mitchell, “Beyond Proof-of-Compliance: Safety and
Availability Analysis in Trust Management”, in Pro-
ceedings of 2003 IEEE Symposium on Security and
Privacy, 123–139, May 2003.

[23] B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe,
and I. Stoica, “Declarative Networking: Language,
Execution and Optimization.” In Proceedings of ACM
SIGMOD International Conference on Management
of Data (June 2006).

[24] Yuri Matiyasevich, Hilbert’s Tenth Problem,MIT
Press, 1993.

[25] Elliott Mendelson, “Introduction to Mathematical
Logic,” 4th edition, Academic Press.

[26] “Prolog,” Wikipedia. http://en.wikipedia.
org/wiki/Prolog.

[27] OASIS. Security Assertion Markup Language
(SAML). www.oasis-open.org/.

[28] Oxford English Dictionary, 2nd edition, Oxford Uni-
versity Press, 1989.

[29] Alfred Tarski, “A Lattice-Theoretical Fixpoint Theo-
rem and its Applications”,Pacific Journal of Mathe-
matics5:2 (1955), 285–309.

