DKAL.: Distributed-Knowledge Authorization Language

Yuri Gurevich Itay Neemah
Microsoft Research Department of Mathematics
One Microsoft Way University of California Los Angeles
Redmond, WA 98052 Los Angeles, CA 90095-1555
gurevich@microsoft.com ineeman@math.ucla.edu
Abstract is found in [5,§8]. Here we introduce Distributed Knowl-

edge Authorization Language, in short DKAL, conceived in
DKAL is a new declarative authorization language for Fall 2006 when SecPAL appeared [4] and Itay Neeman first
distributed systems. It is based on existential fixed-pointvisited Microsoft Research. Is there a need in another au-
logic and is considerably more expressive than existing au-thorization language? We believe so. Here are some of the
thorization languages in the literature. Yet its query algo reasons.
rithm is within the same bounds of computational complex- 1. There is a potential information leak problem in Sec-
ity as e.g. that of SecPAL. DKAL's communication is tar- PAL and all preceding languages. A naive dramatization
geted which is beneficial for security and for liability pro- in Fig. 1 illustrates the problem in SecPAL terms. The de-
tection. DKAL enables flexible use of functions; in par- partment of Special Operations of some intelligence agency
ticular principals can quote (to other principals) whateve appoints secret agents by assertions like S1. Bob, who is
has been said to them. DKAL strengthens the trust delegajust a receptionist, wants to find out who secret agents are.
tion mechanism of SecPAL. A novel information order con- He does not dare to pose that query (and suspects that the
tributes to succinctness. DKAL introduces a semantic gafet system would not allow him to); instead he asserts S2 and
condition that guarantees the termination of the query algo S3 where spot 97 is one of the parking spots over which he
rithm. has the authority, e.g. a visitor spot. It follows from S1 and
S2 thatBob says John Doe isSecrAgent. Now,
by posing an “innocent” query about who can park in spot
1. Introduction 97, Bob gets a list of all segret agents. _The problem can be
addressed on the level of implementation, for example by
. . , . attempting to separate confidential and non-confidential in
In an increasingly interconnected world, the authoriza- ¢, mation (which is easier said than done: both may be nec-

tion policies grow more involved. Rights assigned and ggqqary to derive certain permissions), but the right way to
maintained by an autonomous central authority give way 10 4 4qress the problem is at the authorization-language. level

r_ights that depend upon credentigls is_,sued by outside enpk Al solves the problem by making communication tar-
tities that may rely upon credentials issued by yet other goaq The analog of the naive dramatization does not work
entities. An authorization language should handle all that;, bk AL as assertions like S1 would be targeted to an au-

in a secure, uniform and comprehensible way amenable t0yiance that excludes Bob. See more on info lealidin
analysis. It should facilitate policies that are more madul

and thus more stable in the changing environment.
Logic is a natural foundation for declarative authoriza-

2. The expressivity of the existing languages is too lim-
ited. Consider for example nested quotations. They are
tion languages. It allows one to write high-level policyasil expressible in Speaks-For [1], which has expressivity lim-

' itations of its own, but not in SecPAL and other Datalog

in a human-readable form. The resulting declarative policy based languages. More generally, following Datalog, these
serves as a base, a legal manifesto of sorts, from which spe: ' ' '

cific permissions are derived. And indeed many lo ic-basedl'fjmgua(‘:]es do not use functions in arguments of recursively
permi) v 109 defined relations. Avoiding functions (if and when it is pos-
authorization languages have been proposed. One of the lat-

est is SecPAL [5]; a quick review of preceding languages sible) can make policies more awkward and less natural. In
aq P g languag principle, Datalog with constraints can simulate such dse o

*Most of the work presented here was done when Neeman was a Visit fl_mCtionS (compa.rg the th program5§@0 but this W_OU|d
ing Researcher at Microsoft Research. violate the feasibility restrictions of the languages iresfu

Speci al Operati ons says John Doe i sSecrAgent (S1)
Bob says Speci al Qperations can say p isSecrAgent (S2)
Bob says p canParkl nSpot 97 if p i sSecrAgent (S3)

Figure 1. Secret agent information leakage

tion. DKAL enables unrestricted use of functions that can the form related to Constrained Logic Programming [17]
be nested and mixed while maintaining the computationalis given in [15, Appendix A]. That version is easy to in-
time bounds of SecPAL. (The decidability and complexity troduce to an audience familiar with logic programming in
issues are addresseds@and§10.) the form of Datalog with Constraints [20] or Pure Prolog

3. One can make authorization rules more succinct by [26]. In either case, a logic program is used to define ad-
partially ordering portions of information independentiy ditional relations over a given first-order structure. I ou
who possesses thenmi7 is devoted to the information or- terminology, the given structure is teabstrate structurer
der which is denoted; = < y implies thaty is at least just thesubstrate and the new relations aseiperstrate re-
as informative az. The information order is defined re- lations Inthe Constraint Datalog case, the substrate is often
cursively. This recursion is powerful, which is especially called the constraint domain [20]. In the Pure Prolog case,
useful in the context of nested expressions. See for exampldghe substrate includes a Herbrand universe with no built-in
rule SaidMon in Fig. 5 which is a part of the definition of relations, with the possible exception of equality; in addi
the information order on quotations. tion, the substrate may have a limited number of additional

4. There is a better logical platform for authorization datatypes, e.g. integer arithmetic.
languages than Datalog with or without constraints, namely EFPL employs logic programs that can be defined as
existential fixed-point logic (EFPL). We recall EFPLYA. generalized Constraint Datalog programs. First, we need
We think also that knowledge is so important in authoriza- to remove the restriction on the use of function symbols. A
tion theory that it should be made explicit. Datalog rule has the form:

DKAL addresses all these concerns. It is more expres-
sive than the languages in the literature.§Ii we give a Ro(s1,-.-,5;) ‘= Ra(t1, ... 1), Ra(u1, ... ug), ..., cON
natural embedding of SecPAL, one of the most expressive . .
authorization languages to date, into DKAJ9. and§10 are ~ Where the arguments of relation symbdis are variables
devoted to a query evaluation algorithm for DKAL, with ©F constgnts and whemon is a quantifier-free first-order
the same time bounds as SecPAL's query evaluation a|g0_formula in the subs_trate vocabulf'iry. EFPL allows th_e ar-
rithm. Before reaching those sections, we illustrate DKAL 9Uments to be arbitrary expressions (a.k.a. terms) in the
by examples, define it precisely, and discuss various as,pectSUbStr?‘t? vqcabulary. Second, in the literature, the_ralare
including targeted communication, the use of functions, th ways Il_mltatlorjs on the legal substrates of Con;tralpt bata
information order, and DKAL's mechanism for ensuring ter- 109 Which are imposed to guarantee good algorithmic prop-
mination of the query evaluation algorithm in the presence €1ties of the legal substrates. For example, [20] requires
of functions. We discuss related work §&2, and we con- quantifier elimination. EFPL imposes no such limitations.

clude in§13 with a summary and directions for future work. Alterpatiyely, EFPL logic programs can be defined as
generalizations of Pure Prolog programs where a substrate

is an arbitrary first-order structure. In particular, thé-su
strate may have free constructors (like the functions of a

We gratefully acknowledge collaboration with M. Parama- Herbrand universe) applied to regular elements, thats, el
sivam on earlier stages of the project, conversations with ments that are not produced by means of free constructors.

Slava Kavsan, and comments of Moritz Becker, Nikolaj In the sequel, logic programs are by default EFPL pro-
Bjerner and Andreas Blass. grams. A logic progranil over a substrat& computes the

superstrate relations and thus produces an enriched struc-
. e) . tureTI(X). This is clear ifll terminates oveX. If IT does
2. Existential fixed-point logic (EFPL) not terminate ovel, it still computes the superstrate rela-
tions. It just takes infinite time to do so. Fortunately, gver
We recall what EFPL is and introduce the sub- particular instance of a superstrate relation is computed a
strate/superstrate terminology. EFPL was introduced]in [8 a finite stage. In cases of interest in the rest of this paper,
and has an attractive model theory. A version of EFPL in the programs compute all relevant instances in finite time,

Acknowledgements

Chux: (Alice canbownl oad Article) to Alice (A1)

Alice: Best tdOn Alice canDownl cad Article (A2)
Best : (Chux tdOn p canDownl oad Article) to p (A3)
a knows =z «— a knows p said z, a knows p tdOn =z (C1)
a knows p tdOn (¢ tdOn z) <« a knows p tdOn 2z, a knows ¢ exists (C2)
a knows p tdOn (¢ tdOng z) « a knows p tdOn z, a knows ¢ exists

Alice knows Chux said Alice canDownl oad Article (K1)
Alice knows Best tdOn Alice canDownl oad Article (K2)
Alice knows Best said (Chux tdOn Alice canDownl oad Article) (K3)
Alice knows Chux exists (K4)
Alice knows Best tdOn (Chux tdOn Alice canDownl oad Article) (K5)
Alice knows Chux tdOn Alice canDownl oad Article (K6)
Alice knows Alice canDownl oad Article (K7)

Figure 2. User centric delegation example

so we need not worry about non-terminating computations. the substrateX. The precise syntax of EFPL queries is im-
For example, consider this simple logic program: material here. DKAL queries are definedsi.4.
) As we mentioned already, there are different forms of
T(left(z) right(z)) Constraint Datalog in the literature, distinguished by the
T'(right(z),left(y)) « T'(z,y) safety restrictions they place on programs to ensure ter-
T(x,2) « (T'(x,y) NT(y, 2)) mination. The form obtained from EFPL with the DKAL

_ _ _ safety conditions is new. We’'ll say more on how DKAL
wherel ef t andri ght are substrate functions, afftis a guarantees termination §9.

superstrate relation. If we assume that the two functioas ar
free constructors and that there is at least one substrate co
stant, so that the corresponding Herbrand universe is well
defined, then our logic program is a Pure Prolog program.
In that case, the substrate is the infinite binary tree, aad th ~ DKAL's syntax (vocabulary, rules, assertion forms) is
program computes a partial ordEthat is the lexicographi- defined ing8. Here we begin introducing it gradually, by
cal order at every level of the tree. But the program is mean-examples. Since SecPAL is naturally translated into DKAL,
ingful without these additional assumptions. all the varied scenarios of [4, Section 5] are expressible in
As written, the example program is not a Constraint Dat- DKAL. So we give examples of different kinds in this paper.
alog program because the function symbols occur in rule We start with a user-centric example, partially because we
heads. Define Liberal Datalog as a Constraint Datalog with believe that DKAL is particularly appropriate for the user
no limitation on the legal substrates. The example programCentric approach to authorization. We demonstrate the ba-

3. A user centric example

reduces to the following Liberal Datalog program: sics of DKAL, in particular how trust and delegation are
expressed.
T'(u,w) < u = left(z) Nw = right(z) Alice would like to download Article from Repository in
T(u,w) « T(z,y) Au = right(z) Aw = left(y) course of her work for Fabricam. Repository lets Fabricam
T(z,2) — T(z,y) AT(y, 2) employees download content with no constraints. Fabricam

in turn requires that its employees respect intellectuappr
Furthermore, in a similar way, any EFPL program can be erty. Fig. 2 shows how Alice verified her right to download
transformed into a Liberal Datalog program. Article.

In addition to logic programs, EFPL has queries. Queries Alice bought the right at an online store Chux (an
are first-order formulas, subject to some restrictions, in allusion to Chuck’s). Chux told her that she can
the substrate vocabulary enriched with superstrate syanbol download Article; this is represented by assertion Al
Queries are evaluated not in a given substfafdut in the in Fig. 2. In the formal model we compute a su-
structurdll(X) produced by the given logic programover perstrate relationknows, and the assertion Al leads

Chux: (a canDownload s) to a < (A4)
a authorized $k to Chux for s, a hasPayRate Perfect, price(s)=*k.
account s. Chux: (Al'i ce hasPayRate Perfect) to Chux (A5)
Chux: accounts. Chux tdOn a hasPayRate e (AB)
Chux: a tdOn (a authorized $k) to Chux for s (A7)
Alice: (Aice authorized $40 to Chux for Article) to Chux (A8)

Figure 3. Confidentiality example

to the instance K1 of that relation. The expression
Al'i ce canDownl oad Arti cl e denotes arinfon, a
piece of information, and so do&hux said Alice
canDownl oad Article. The relationknows is of
type Principalx Info. Note that from assertion Al Alice
learns only thatChux said Alice canDownl oad
Articl e, notthatAl i ce canDownl oad Article.

Alice noticed that the copyright for Article belongs to
Best Publishing House; hence the assertion A2 whdf@n
stands foris trusted on The expressiorBest tdOn
Al'i ce canDownl oad Arti cl e denotes yet another
infon, and assertion A2 leads to instance KXofows in
the formal model.

The intended meaning pft dOn z is given by two rules.
One is C1 which states that a principaknows z if she
knows that some principal saidz and thatp is trusted on
. We'll get to the other rule shortly.

Unfortunately Alice does not know whether Chux can be
trusted onAl i ce canDownl oad Arti cl e, and Best,
who is trusted, did not say th&tl i ce canDownl oad
Arti cl e. So Alice cannot yet conclude that she is allowed
to download Article. Alice contacts Best who authorized
Chux to sell download rights to Article and who has in its
policy the assertion A3 (with a free, unconstrained vagabl
p). As aresult Alice learns K3.

The infonp t dOn x expresses not only trust mon z,
but also a permission fop to delegate the trust. (There
is a way to express non-delegatable trust, usid@n, in-
stead oft dOn. The distinction betweenhdOn andt dOng

K7. Having deduced K7, Alice approaches Repository, and
downloads Article.

4. Info leak, and targeted communication

Recall the naive dramatization of the information leak-
age problem irgl. Let's consider a slightly less naive ex-
ample. Modify the scenario @B by replacing assertion A1
with the assertions in Fig. 3. Chux compiles payment statis-
tics of customers and rates them. Customers rated “perfect”
get the download authorization immediately upon authoriz-
ing a proper payment to Chux, even before the funds are
received. The rating is managed by accounts.Chux. Itis in-
tended that customers know nothing about the rating system
or their ratings or other customers’ ratings. Chux makes as-
sertion A4 with three conditions. A condition is an expres-
sion of type Info or a substrate constraint. In this case the
first two conditions are infon expressions, and the third is
a constraint using a substrate functioni ce. Implicitly
the assertion has also safety conditions, addressé8.tn
and§9, that restrict the ranges of variables; the safety con-
straints apply also to assertions A6 and A7. According to
assertion A5, accounts.Chux rated Alice “perfect”; not th
the assertion is targeted only to Chux. According to asser-
tions A6 and A7, Chux trusts accounts.Chux on payment
ratings and trusts the customers on payment authorization.
The price of Article is $40. When Alice decides to purchase
Article, she makes the assertion A8. Assertions A4—A8 lead

is inherited from SecPAL and will be addressed later.) The Chux to communicate the infoAl i ce canDownl oad
right to delegate is captured by the double rule C2; only Arti cl e to Alice; as above Alice can proceed to verify

the first line is relevant to the current examplea lknows
thatp t dOn z and thatg exi sts thena knows thatp
is also trusted o t dOn z, and this allowsp to delegate
the trust tog. The restriction that: knows (the existence)

her right to download Article.

No infon of the formp hasPayRat e R is commu-
nicated to Alice, and a probing attack such as the one
in Fig. 1 does not work. The DKAL parallel of S2

of ¢ is a safety condition that prevents the knowledge of here is assertionAl i ce: accounts. Chux tdOn

a from exploding with irrelevant details. We’'ll say more

p hasPayRate Perfect. The assertion is harm-

about the rule that leads to knowledge of infons of the form less, since A5 makes the inf@account s. Chux sai d

q exi st s in §9; here it suffices to say that the rule applies
to K1 and results in K4.
Applying rules C1 and C2 to K1-K4, Alice obtains K5—

Al i ce hasPayRat e Perfect known only to Chux,
not to Alice. The confidentiality of pay ratings of other prin
cipals is similarly protected.

The targeting of communication is beneficial also with much harder.
respect to liability. Suppose that an agentyof stateS;
issues David a document, addressedtavine shops, that
allows them to sell wine to David. If David buys alcohol
from a wine shop in stat§, and if this violates the law of
S,, agencyA is not liable because it addressed the docu-
ments to wine shops iy, notin S.

Audience restrictions can be communicated by means of>" o _)
SAML [27], see specifically [1152.5.1.4]. (The issue is ad- ticipate in discount pla_n 5X4302_.. To obtain the @scount,
dressed in the SecPAL implementation as well.) While the they must present a signed certificate from Fabricam stat-

audience restriction may be helpful with respect to liabil- N9 that they are employees. Chux relies on a cryptographic
ity, the SAML audience field does not solve the problem in

server Crypto to verify that the signed statements are au-
Fig. 1. Indeed, if the faclohn Doe i sSecr Agent is the_n_tic. The sygt_em should be d_esigned so that Crypto just
modified with an audience restriction then all that Bob has Ve'ifies authenticity. Crypto's actions should not depend o
to dois to use the modified fact in S2.

Chux’s policy on discounts, so that Chux’s policy could be
In probing attacks of the kind illustrated in Fig. 1, prin-

changed without requiring a change in Crypto’s behavior.
cipals that are allowed to authorize some permissions-ever cpux makes a quotation assertion A9 in Fig. 4. Crypto
age the authority to learn information they are not meant to 5ots a5 a “dumb” server, merely decrypting the statements
know. One way to thwart such probing attacks is to disal- j; receives, and passing them on to Chux. Policy, for ex-
low conditional assertions by “outsiders” (like Bob), as in ampje assertions A10 and A11, is the prerogative of Chux.
Cassandra [6, 7], but this is too restrictive. One may fil- |, this case, the end effect (of authorizing the discount
ter out some conditional assertions on a case by case bagy Fapricam employees) could be achieved without quota-
sis at the implementation level, but this ad-hoc approachiions. chux could trust Crypto opi s an enpl oyee
makes it hard to reason about security. Yet another way isof Fapri cam and Crypto in its own policy could trust
to compartmentalize facts to the extent possible and handlg=gricam on this. The issue here is not just achieving the

requests using primarily the relevant compartment policy. enq effect, but the flexibility to concentrate the policy at
But there are limits to compartmentalization (unless yeure gpe place.

ally have a union of essentially disjoint policies), pripais
still can probe facts in their compartments, and the apfroac ~ DKAL's vocabulary may be extended by user-introduced
does not make reasoning about security easy. functions and relations. We already saw functiotri ce in

By targeting communication and separating knowing §4. Other typical user-introduced functions and relati@ns r
from saying, DKAL solves the problem at the level of the late to time, various directory structures, basic arithoadt
authorization language, so that information does not have t operations, etc. DKAL also permits user-introduced func-
be compartmentalized a priori, and conditional assertionstions that take attribute or infon values. To demonstrate
do not have to be filtered out. Of course DKAL does not this, modify the confidentiality example above by replacing
prevent information from leaking as a result of negligence. assertions A7 and A8 with assertions A12—-A14 in Fig. 4.
For example, in the pay rate scenario, Chux may acciden-Chux does not simply accept infan aut hori zed $k
tally target Bertha’s pay rating to Alice. But thatis avery to Chux for s from customer, but requires that the
different story. infon comes with a certificate, signed using private key.
(Chux will need the certificate to obtain the funds from a
bank.)

The built-in free-constructor functions includeai d
andt dOn. Functionsai d enables (possibly nested) quo-
tations in authorization policies, which leads to greatx-fl
ibility in designing more modular policies. Suppose for ex-
ample that Chux (which appeared in Figures 1 and 2) has
sseveral discount plans, and that employees of Fabricam par-

5. Use of functions

We assume here a given (that is substrate) relation

In Datalog, with or without constraints, the symbols of aut henti c(a,z,c) meaning that is a certificate of in-
recursively defined relations are applied only to (tuplgs of fon x signed with the private key ofi. Given an in-
variables and individual constants, and the (Constraiat) D fon = and stringe, function augm(z,¢) (an allusion to
alog based authorization languages inherit the restrictio "augment”) produces a new infon. When Alice wishes
on the use of functions. In contrast, existential fixed-poin to purchase Article, she makes assertion Al4, whgre
logic allows free use of function symbols, and EFPL based is a certificate of the inforAl i ce aut hori zed $40
DKAL makes intensive use of functions, both user-specific t o Chux for Article, which Alice produced and
and built-in. Function symbols routinely appear in the leead signed using her private key. Then, due to assertions A12
of rules, and typically our functions are free constructors and A13,Chux knows Al'i ce authorized $40 to
The flexible use of functions comes for a price. The proof of Chux for Arti cl e, and then, as i§4, Alice receives
program termination, let alone complexity proofs, becomes an authorization to download Article.

Chux: Crypto tdOn r said ¢ is an enpl oyee of r (A9)

Chux: FabricamtdOn ¢ is an enpl oyee of Fabricam (A10)
Chux: g can take discount 5X4302 «— ¢ is an enpl oyee of Fabricam (A11)
Chux: a tdOn augm(a authorized $k to Chux for s, ¢ (A12)
Chux: a authorized $k to Chux for s « (A13)

augn(e authorized $k to Chux for s, ¢,
aut hentic(a, a authorized $k to Chux for s, ¢

Alice: augnm(Al'ice authorized $40 to Chux for Article, C to Chux (A14)
Chux: Crypto tdOng » said ¢ is an enpl oyee of r (A15)
Crypto:y (Fabricamsaid Chris is an enployee of Fabricanm) to Chux (Al6)
a knows z «— a knows p saidg x, a knows p tdOng x (C3)
Chux knows Crypto saidg Fabricamsaid Chris is an enpl oyee of Fabricam (K8)
Chux knows Fabricamsaid Chris is an enpl oyee of Fabricam (K9)
Crypto:y (r said g is an enployee of r) to Chux « (A17)

Crypto2 said r said g is an enpl oyee of r
Figure 4. Use of functions, and restricted delegation

6. Restricted delegation only upon internal knowledge (see the final paragraph on
§8.3) while A17 is based on communication from Crypto2

. . to Crypto.
One of the major advances of SecPAL [4] is the mecha- We sometimes writknows ., sai do., andt dOn..

nism of restricted delegation. We adapted that mechanis : o

to DKAL. DKAL has two kinds of infons expressing trust, Mor knows, sai d, andt don. The distinction between
ptdOn x, andp t dOng x. The trust given by the former

is delegatable; the trust given by the latter is not. To illus
trate the use of non-delegatable trust, replace asser®on A
in Fig. 4 with assertion A15 in Fig. 4. The new assertion
expresses non-delegatable trust in Crypto ensai d ¢

is an enpl oyee of r. Suppose that Crypto is given
a signed certificate from Fabricam attesting that Chris is
a Fabricam employee. After authenticating the certificate
Crypto produces assertion A16. The subsdarijpt A16 sig-
nifies restricted communication; more on this in the next
paragraph. Assertion A16 leads to knowledge K8, with the

subscript on the first said. K8 and assertion A15 give K9 7. Information order
by means of rule C3.

The delegation rule C2 has delegatable trust assumed in Rules C1-C3 have a common aspect: a principal
its body and cannot be applied to A16, so Crypto cannot knows some infont because: knows some other infons
directly delegate the trust to others. He may attempt to y1,...,yx. The information order: ensues y (symboli-
circumvent the prohibition, for example by placing asser- cally z < y) on infons extracts the common aspect. (We
tion A1l7. It seems that by saying the appropriate thing, resurrect the obsolete transitive meaning of ensue [28].)
Crypto2 enables A16. But the attempt fails because asserideally, the meaning of < y would be that all informa-
tion Al7 is restricted. The precise meaning of restricted tion of z is present iny but this leads to undecidability.
assertion involves relatioknows, read knows internally. ~ The actual order is a constructive approximation of thelidea
p knowsz internally if this follows from assertions placed one. The mediating rules KMon and KSum in Fig. 5 ex-
by p himself, with no dependence on assertions placed bypress the common aspect of C1-C3 and their counterparts
other principals. Restricted assertions can be conditione for knows,. Rule KMon states that knowledge ofis a

knows ., andsai d., on one side anknows, andsai d

on the other side is similar to SecPAL distinction between

AC,00 = Asays zand ACO | A says z, and is used
here to the same effect, namely preventing principals from
circumventing non-delegatability. Delegations of awsniyr
bounded depth can be obtained by nestitn, in the
head of the assertion delegating the right. SecPAL exam-
ples on bounded depth delegation, see e.g¢3bbecome

' DKAL examples via the embedding of SecPAL into DKAL
explained ing11.

aknowsgz <« aknowsgy, z<y (KMon)

aknowsy zy +x2 <« aknows,yzy,aknowsy zo (KSum)

r< psaidy z + p tdOnyg « (TrustApp)

ptdOn (¢gtdOngz) < p tdOn = + ¢ exists (Del)
ptdOngz < p tdOn 2 (TrusDoo)

psaidgz<psaidgy « z<y (SaidMon)

Figure 5. House Rules, part |

consequence of knowledge 9ff x ensuesg;. Rule KSum next subsection.

introduces infon addition operation of type Inftnfo — We assume that substrate functions and relations are
Info, and the rule states that knowledgergf+ - is a con- computable. More precisely, we assume that substrate el-
sequence of knowledge of both andx,. Each of KMon ements are (represented by) strings in a fixed alphabet and
and KSum is alouble rule with d € {0,00}. We use dou- that there is an algorithm Eval that evaluates substrate fun

ble rule notation similarly below. tions and relations. Given a function nanie of arity
The content of rules C1 and C3 is now expressed suc-h and elements, ..., a;, Eval computes(ai, ..., a;).

cinctly by ensue double rule TrustApp. Similarly the con- We treat constants as nullary functions. Given a relation

tent of rule C2 is expressed by ensue double rule Del. RulesnameR of arity j and elementa,, ..., a;, Eval determines

KMon-Del arehouse ruleof DKAL. Rules C1-C3 are not whetherR(as, ..., a;) is true or false.

house rules; they are consequences of house rules. The universe ofX splits into two sorts. One is Reg-

The inclusion of the information order allows creating a ular, with a subsort Principal and possibly other, user de-
rich structure of information with easily understood rules fined, subsorts. Regular elements may be principals, time
For example rule Trubo expresses the fact that non- moments, time intervals, files, directories, domain names,
delegatable trust is a consequence of delegatable trust. Thetc. The other is Synthetic, with subsorts Attribute, Speec
inclusion of the information order also allows for easily ex and Info. Functions with regular (resp. synthetic) values a
pressing strong quotation semantics. The deceptively sim-regular (resp. synthetic), and the same convention agplies
ple rule SaidMon incorporates consequences of speechesariables and expressions in general. (Here and below, ex-
into the calculation of knowledge, so that, for example pressions are by default first-order expressions, thatss; fi
p said g tdOng = ensuep said g tdOn z. DKAL order terms, in the substrate vocabulary.) Every synthetic
thus has very strong semantics for quotations, computingfunction is a free constructor, and every synthetic element
not only principals’ speeches, but also their implied cense is constructed, in a unique way, from regular elements by
qguences. The rule could not be expressed as a single ruleneans of synthetic functions. Tlsemantic treeof a sub-
without the information order . strate element is the unique ordered finite tree rootechat

and such that

8. The nuts and bolts e if bis regular then semtré® has no other nodes,

8.1. Substrate e if b = F(by,...,b,) and functionF' is synthetic
then there are exactly, subtrees under the root:
semtreéb,), ..., semtreéb,,).

Substrate and superstrate were mentioned alrgadin
DKAL, a substrate is a many-sorted structi¥esatisfying
certain requirements that we describe in this section. The
basic functions and relations of are substrate fgngﬂons syntactic treeof an expressionis the unique ordered finite
andsubstrate relationsThe structureX can be partial in the

) . . tree rooted at and such that
sense that substrate functions can be partial. The possible
partiality results in some details that one has to be casitiou o if ¢ is regular, then syntrég) has no other nodes,
about. In this exposition, for simplicity, we ignore those
details; none of our results is compromised by that. The e if ¢t = F(¢4,...,t,) and function symbolF’ is syn-
vocabulary ofX, thesubstrate vocabularndoes not contain thetic, then there are exactlysubtrees under the root:
any of the five superstrate relation symbols described in the syntre€t,), ..., syntreét,,).

A substrate relatior r egconp b holds if and only ifa
is regular,b is synthetic, and: is a leaf of semtre@). A

Regular Sort
Synthetic Sort BES
Regular Function Symbol BES
Synthetic Function Symbol

Regular |

Substrate Relation Symbol
Superstrate Relation Symbol

Synthetic |

Principal | ...
Info |

Speech | Attribute

sai dg: Info — Speech

t dOng: Info — Attribute

canAct As: Principal— Attribute

canSpeakAs : Principal— Attribute

+ : Info x Info — Info

Z: (Regularx Attribute) U (Principalx Speech — Info
exi st s: Attribute

r egconp : Regulax Synthetic |
ensues : Info x Info

knows ; : Principalx Info

sayst o4 : Principalx Infox Principal

Figure 6. DKAL vocabulary

A subexpression of ¢ is aregular componenof ¢ if s is
regulart is synthetic, and is a leaf of syntreg).

Di rector,andp sai d Ai sHi r ed, then it follows that
Director said AisHi red. Uses of the other house

The substrate always has the following synthetic functions have been demonstrated in earlier sections.

functions called house constructors unary functions

sai d, saidg, tdOn, tdOng, canActAs,

canSpeakAs, binary functions+ and Z, and a con-

stantexi st s; Fig. 6 gives their types.
Convention8.1 Function symbolssai d andt dOn can

be written assai d,, and t dOn., respectively. Thus

sai d; denotessai d whend = oo and denotesai dg
whend = 0, and similarly fort dOn,.
functionssai dg, t dOng, canAct As andcanSpeakAs,

In the case of

The substrate may have user-introduced regular func-
tions and relations. It may have user-introduced synthetic
functions with values of type Attribute or Info. The only
functions with values of type Speech are house constructors
sai d andsai dg.

Remark 8.2 A priori, one may expect thasai dy
and tdOn,; are relation of type Principalx Info,
and canAct As, canSpeakAs are relations of type
Principal x Principal. Why do we treat them as functions?

we write the function name of the house constructor fol- First, there is a substantial increase of the expressitityeo
lowed by the argument, with no parentheses. For example Janguage. Contrary to relations, functions can be nested. |
canAct As Bob is the attribute obtained by applying the particular, we can express quotations, likeai d ¢ sai d

functioncanAct As to the constanBob. We writex + y
instead of+(z,y). In the case of the functio we gen-
erally omit the function name altogether writing jlBdb
i s a user rathertharZ(Bob, is a user). Forex-

x. Second, DKAL communication is targeted. What would
a propositionp sai d x mean? Who's the target of that

communication? Third, there is in general no central au-
thority in a distributed situation. What would a proposition

ample, the full version of double rule TrustApp in Fig. 5 p t dOn z mean? Who trustg on z? From our point of

IS

x < +(I(p,sai d(x)),Z(p,t dOn(x)))
z < +(Z(p,sai do(x)) + Z(p,t dOng(x)))

The functionscanAct As andcanSpeakAs may be

view, phrases like sai d x are infons, not propositions.
We will revisit the issue in Remark 8.4.

8.2. Superstrate
There are five superstrate relationrsays, knows,

knows,, saysto and saystog; Fig. 6 gives their
types. Againd € {0,000} and subscripto may be omit-

used for assignment of roles; their precise meaning is givented. We writep knows; = instead ofknows 4(p, =), and
by house rule Role in Fig. 7. To give a quick example, ifit p says, x t 0 ¢ instead ofsayst 04(p, z,q). We writex

is known thatp canAct As Di rect or, andDi r ect or
canRead f 00, then it follows thaijp canRead f 0o. In
the other direction, if it is known thap canSpeakAs

ensues y orz < y instead ofensue(z,y). (This use of
the < symbol is a mere convenience and does not preclude
the use of the symbol in the substrate.)

pknows gsaidgx <« gsaysgztop (Say2know)
pknows x «— pknowsgzx (K0oo)
r< x (EOrder)

r<z «— zxZlyy<z
r< x4y (ESum)

y<zty

r+y<z «— z<zy<z
texists <z <« tregconpax (Exists)
psaida < psaidgz (Said)oo)
psaidy(z+y)<psaidsjz+psaidgy (SaidSum)
psaidsx<psaidgpsaidgz (SelfQuote)
ptdOngz <ptdOngptdOnygz (Del™)
p attribute < ¢ attribute+ p canAct As ¢ (Role)

q speech p speecht p canSpeakAs ¢

Figure 7. House Rules, part Il

Remark8.3 One can develop DKAL without relations a principal variable called thearget variable Assertion 1
knows,, representingg knows,; = with p saysy x to is aknowledge assertiorit does not have a target variable,
p. We choose to make knowledge explicit because of theand it gives rise to rule

fundamental role of knowledge and because the separation

of knowing and saying is convenient technically as well. A knows, z
The superstrate relations are computed over the substrate A knowsy w1, ..., A knowsy z,,
by the logic program that consists of the house rules in Fig- A knowsy t; exists, ...,

ures 5 and 7 as well as of the rules given by assertions placed
by principals. Assertions forms and the rules that assestio
give rise to are described in the next subsection. where the listty,...,¢; consists of the variables in

Remark8.4. In Remark 8.2, we gave some reasons for mak- z, z1, ..., z,, conand of the non-ground regular compo-
ing constructssai d;, tdOng, etc. functions and thus nents of assertion head Since the rule contains the con-
“pushing” them into the substrate. Having these constructsditionsA knows, t¢; exi sts, we say that,,..., ¢ are
as substrate functions has one additional advantage. ByA-boundedn the assertion. Assertion 2 isspeech asser-
means of house rules, we can impose natural axioms ortion and gives rise to rule

these constructs. But one has to be careful if one is de-

termined to keep query evaluation terminating and feasible A saysg x to p«—

A knowsy z1, ..., A knowsy z,,

A knows, t; exists,...,

A knows, ¢, exists, con

A knows, t, exists, con

8.3. Assertions

There are two forms of DKAL assertions:

1. Ay = — T1,...,T,, CON where the listy, ..., ¢, consists of the variables of the as-
sertion and the non-ground regular components of the as-
sertion head:, with the exception of the target variahie
Here A in both forms is a ground principal expression de- Semantically there is no difference between an assertion
noting theowner of the assertiony is eitheroo or 0, and and the rule that it gives rise to. The difference is purely
oo is typically omitted;z, z1, . . ., z,, are infon expressions; syntactical. Assertions provide simpler and more conve-
andconis asubstrate constraintthat is a conjunction of nient way to write rules.

possibly-negated atomic formulas in the substrate vocabu- Note that any assertion rule conditions its head only on
lary. All variables are regular, that is of type Regulaiis the knowledge of the assertion owner possibly augmented

2. Ay xto p <« z,...,1,,C0N

with a substrate constraint; this is key in dealing withthe i 9. Query evaluation
formation leakage problem 4. In casel = 0, the knowl-
edge is internal; that property, inherited from SecPAL, is

: . e The flexible use of functions makes DKAL closer to Pro-
key in delegation restrictiofb.

log than to Datalog. It is of course only too easy to write
a non-terminating program in Prolog. But DKAL is care-
fully calibrated to ensure the termination of an algorithm

Fix a substrateX and letY be the vocabulary ok ex- that corr;lp l;]tes answclars to quer|$§. | q heti
tended with the superstrate relation names. Further, con- Recall that state elements splitinto regular and synthetic

sider an authorization policy (that is a set of assertiohs) In policy assertions, variables range over regular elesent

in the vocabularyr’. Let IT be the logic program that con- ©"Y- Fl;rther,d c%nsmer "_’mgl assertian and letA k()je the
sists of the house rules and the assertionstinAnd let ~ OWner ofa:andi be a variable Inv or a non-ground regu-
TI(X) be thestate of knowledgeletermined byX andTI, lar component ofy’s head. Unlessy is a speech assertion

that is the enrichment ok by means of superstrate rela- andt is the target variable, we require thatontains con-
tions computed byl over X dition Aknows ; t exi st s for the appropriatel; see 8.3.

A basic query in vocabulary T is a formula In particular all non-target variables of_s head occur in the
body. Also, for the purpose of evaluating the bodywthe

8.4. Queries

p knows t(vy,...,v;) wherep is a ground principal ex- X
pression in the substrate vocabuldrig an infon expression €lévant values of non-target variables are those whose ex-
with variablesv,, . . ., vy, the variables are all regular, and SteNce is known té\. The requirement is a semantic safety
dis 0 or co. The query is evaluated over the state of knowl- condition that prevents the knowledge/ofrom exploding.
edgell(X). Theansweris the set of tuplegbr . . ., by) of The mfom_f exi sts carries no |_nfor_mat|qn at_)omtex-
regular elements ok such that the type df; is that ofv c_ept thatt §X|sts. See rule EX|s_ts in _Flg. 7 in th!s connec-
and tion. Relationr egconp was defined ir§8.1. The intuitive
meaning of relatiort r egconp z is thatt appears inc in
II(X) =p knowsg t(bs,...,bk) A an essential way. By rule Exists, infanexi st s is the
p knowsy b, exists A -2 A least informative among infons that mentibin an essen-
p knows, by exists. tial way.

The semantic safety condition allows us to show that
only the regular elements that are explicitly mentioned in
the policy are relevant and need to be considered as possi-

For any ground principal expressipnap-centric query
is a first-order formula. We defingcentric queries induc-

tively. ble values for variables when evaluating the policy. Since
1. Every substrate constraint igaentric query. the policy is finite, the number of relevant regular elements
2. Every basic queryp knows, t(vi,...,vg) IS p- 1S f|n|t_e. . . :
centric. Things are much more involved with synthetic elements.
While assertions have only regular variables, many house
3. If Q1 andQ- arep-centric queries then so are rules of DKAL have variables ranging over synthetic ele-
=Q1, Q1 A Q2 and@Q V Q2. ments, in particular over infons. We prove that the number

of synthetic elements needed to evaluate a given query un-
der a given policy is finite. The proof is elaborate and uses
the nature of the DKAL house rules; it is written in full de-
tails in the technical report [15].

4. If Q(v) is ap-centric query then so are formulas
v ((p knows v exists) A Q(v)),
Vo ((pknows v exists) — Q(v)).

It follows that all quantifications in a-centric query are We construct a query evaluation algorithm that takes ad-
restricted to elements known o Theanswerto ap-centric vantage of the fact that only finitely many regular and syn-
query is defined by induction, in the obvious way. thetic elements are relevant.

In particular, a Boolean combination of substrate con-
straints angh-centric basic queries iszacentric query. The Theorem 9.1. For any substrateX, given an authorization
availability of negations in queries can be used for conflict policy.4 over X and a quen(, the DKAL query evaluation
resolution at the decision point. For example, in a deny- algorithm computes the answer@under.4 and X.
override system, with read guard RG, read access to File 13

would be given to the users in the answer to the query: The proof is elaborate and long, even for an appendix of
RGknows p hasReadAccessTo File 13 A an extended abstract. It is written in full details in theltec
- (RGknows p deni edAccessTo File 13) nical report [15]. Fortunately one does not need to know the

In this paper, ajuery, that is DKAL query, is a-centric proof in order to use the algorithm. Note that the answer is
query for some. always finite.

10. Worst case complexity is a mere convenience; it allows us to translate SecPAL'S
says by DKAL's says rather than by DKAL'sknows. In

Fix a substrateX. To simplify the complexity analysis the rest of this section, by default, DKAL is Open DKAL.
of the query evaluation algorithm, we assume that the al- Let CD be a constraint domain of SecPAL. We view CD
gorithm Eval of§8.1 works in constant time: given a func- as afirst-order structure. We turn CD into a DKAL substrate
tion or relation symbob and the appropriate tupteof the X whose regular elements are precisely the elements of CD.
elements ofX, Eval evaluatesS(a) in constant time. Es- X extends CD in two ways, by expanding the vocabulary
sentially we count only the number of Eval calls and ignore and adding synthetic elements. We defing = N for
Eval's computation time. Alternatively we could make a €very name in the CD vocabulary. has the built-in DKAL
natural assumption that Eval works in time bounded by a functions. In addition, for each SecPAL predicated X
polynomial of the maximal length of an input string. That has a synthetic function, also denofeed, taking attribute
polynomial would have to be taken into account in the fol- values; the domain of the new functipredis the domain
lowing theorem but would not affect our results in any es- Of the original SecPAL predicafred X has no other sorts,
sential way. The analysis of Eval is orthogonal to the main functions or relations.
issue of this theorem. Fig. 8 completes the definition of the translationThe

If 3is an assertion or a query, then theotation depttof lines in the figure correspond to the SecPAL grammar [4].
£ is the depth to whiclsai d andsai d, (possibly mixed) In the final line, tagged Assertioall is a fresh variable not
are nested i§, and thewidthof 3 is the number of variables ~ occurring in the assertion, antltakes values), co. Sec-
in 3. Note that the width is zero in the ubiquitous case of PAL verbphrases become DKAL attributes, SecPAL facts
basic yes/no queries. become DKAL infons, and each SecPAL assertion gives

rise to two DKAL assertions, one witth= 0 and the other

Theorem 10.1. The time that the query evaluation algo- with d = co. In SecPAL, an assertion context AC is a set of
rithm needs to answer a query under an authorization assertions. Accordingly an assertion context AC composed
policy A is bounded by a polynomial in of n SecPAL assertions gives rise to a DKAL polieyAC)

(length(A) + length(Q))* 1+ composed ofn assertions.

Theorem 11.1(Embedding Theorem)Let AC be a safe
whered (resp. w) bounds the quotation depth (resp. the SecPAL assertion context, and Iétbe the logic program
width) of the policy assertions and of the query. In the im- composed of the policy(AC) and the Open DKAL house
portant case wheré andw are fixed, the computation time ryles. If

is polynomial inlength(A) + length(Q). AC,d+ A says f

A detailed proof is found in the technical report [15]. in SecPAL, wherel is a principal constantf is a ground
The time bound can be sharpened but the importance of theflat fact expression, and € {0, o}, then
worst case need not be exaggerated. Typical cases seem to
be much different. II(Sub) = A saysy 7f

11. SecPAL to DKAL translation in Open DKAL

Remarkl1.2 Itis possible to translate SecPAL to the origi-

In this section, SecPAL is the language defined in [4, 5] nal DKAL rather than Open DKAL. We mentioned already
and not an implementation of the language. We presume that double rule O2 is not essential for translation. The nec
without loss of generality, that the names of sorts, fumstio essary instances of double rule O1 can be incorporated into
and relations introduced explicitly 8 do not occurin Sec- the translation of SecPAL assertions. In SecPAL, a fact is
PAL. flatwhen it does not contaican say, and every facf has

We describe a natural translatiorof SecPAL into aver- the forme; can sayy, ... e, Can sayy, g wheren >
sion of DKAL, called Open DKAL, obtained by augment- 0 andg is flat. We refer tgy as theflat seedf f. We refer to

ing DKAL with double rules each of the facts, ., can sayy, ., ... e, Can saygy,
g, 0 < k < n, as asubfactof f. To translate into the orig-
p saysq z < p knowsy x (01) inal DKAL, definer(A says f if fi,...,fn,con to
p kKnowsy; =+ p saysy = (02) be the set of the following DKAL assertions, instead of the

ones at Assertion in Fig. 8:
Here p says,; = is an Open DKAL abbreviation for
p says, x to g wheregq is any fresh variable. O1 re- Ag:7(f) —71(f1),...,7(fn),con
flects the all-knowledge-is-common nature of SecPAL. O2 Ag:7(f") to all «—7(f)

T(e) =€ (Variable, constant)
7(con) = con (Constraint)
7(pred) = pred (Predicate)
T(pred ey ... en) = pred(ey, ..., en) (Verbphrase)
7(can say, fact) =t dOng 7(fact)
T(can act as e) = canActAs e
7(e verbphrase) = Z (e, T(verbphrase)) = e T(verbphrase) (Fact)
7(A says fact if facty,...,fact,,con =A:q 7(fact) to all — T(fact,),...,7(fact,,),con (Assertion)

Figure 8. The SecPAL-2-DKAL translation map 7

wheref’ ranges over the subfacts 6f The obvious analog few paragraphs. We concentrate mostly on recent work that
of the embedding theorem holds but the proof is a bit more is more closely related to this paper.
involved. Speaks-For Calculus [1] pioneered the use of logic (a
» . form of modal logic in the Speaks-For case). In particu-
Proposition 11.3. The converse of the embedding the- |5 gpeaks-For addressed delegation and representatibn, a
orem is not true. There is an assertion context AC jntroduced thesays construct that, in one form or another,
and a SecPAL queryl says [such thatll(Sub) = has been popular in authorization literature ever sincé- Da
A says 7(f)butAGoo A says f. alog possibly with constraints [20] was the foundation for
many later logic-based authorization languages. DKAL res-
urrected an attraction of Speaks-For absent in the existing

t00. We do not see Proposition 11.3 as a drawback of Ope i)atalog based literature (as far as we know): nested quota-

DKAL. Moreover, it is advantageous if more justified re-
guests get positive answers. Note also that only justifie
requests get positive answers in SecPAL, DKAL and Open
DKAL, and that Open DKAL justifications are every bit as
convincing as those of SecPAL.

If one weakens DKAL by removing rules Del and Del

d The term “trust management” was coined in [9]. The
article introduced PolicyMaker that later evolved into
KeyNote [10]. KeyNote expresses involved scenarios. In
particular, it allows a principal to delegate a subset of his

One may wonder why the rules Deland Del are in [Lghrts tro anr?]tr:e:] p”tnhCIFr)izlytiaEd I nha;is tr:;]eiholgr?.thutX
DKAL in the first place. The question is natural in the con- ere are common authorization scenarios that cannot be ex-

text of SecPAL and Open DKAL. The small additional ex- Pressed in KeyNote. Typically they involve a right granted

pressivity may not justify the two rules. But the situatien i on the.basis of_an attripute that o_rigin_ates from_a lateral
different in DKAL proper. The open character of SecPAL source; see the |ntroduct|on.to [19] in th|s connection.
makes delegation easy. #fsays ¢ can say = and ifg Our late g_enealogy c0n3|sts_pr|mar|_ly of Datalog based
says = thenp says z. This is elegant and simple. Butit languages Binder [12], Delegation Logic [18, 19] and Sec-
also opens too large a venue foio find out (possibly using ~ PAL [5, 13]. Binder [12] extends Datalog with an im-
a probing attack) wha says. Targeted communication and POrv/export construcsays that connects Datalog pro-
confidentiality complicate delegation in a substantial way 9r@ms maintained by different principals and makes the
It should be possible to exercise the delegated authority iniSSU€r of an imported assertion explicit. A principdl
such a way that the delegator is not involved and cannot dis-M&y for example condition a Datalog rule d& says
cover by probing whether the delegated authority was ex-€"P! oyee(C; E). The rule will fire when principal
ercised and by whom. Del naturally captures the intuitive 5 €xportsenpl oyee(C,). A may express his trust
meaning of the delegatability of trust. The other rule, Qel N B on enpl oyee(z,y) by means of a Datalog rule
is a minor issue. enpl oyee(z,y) : - B says enpl oyee(z,y). Re-
cently the import and export aspects of Bindargsy s were
separated in SeNDlog [2]. This useful advance, inspired by
12. Related work a database query language NDlog [23], and DKAL's tar-
geted communication attend to the same concern but were
The literature on the use of logic in authorization policies independent.
for decentralized system is too rich to be fairly reviewed in Delegation Logic features vocabulary specifically de-

signed for authorization policies. Contrary to Binder,aed rich; stronger delegation semantics; and an informatien or
not have explicit issuers for all assertions. But it has a-num der that makes the language more succinct and comprehen-
ber of useful, authorization specific constructs, inclgdin sible.
ones for delegations, representations, and thresholds. Fo Policies written in SecPAL [5], a recent expressive au-
the purpose of execution, Delegation Logic is reduced to thorization language, can be translated into DKAL, and so
Datalog. all SecPAL expressible authorization scenarios are also ex
SecPAL has both explicit issuers of assertions and spe-pressible in DKAL. We attempted to illustrate the useful-
cific constructs designed with distributed systems autho-ness of the new features of DKAL for user-centric scenar-
rization policy in mind. The number of constructs is de- ios, prevention of information leakage, abstraction opery
liberately kept low, but the language is expressive and cap-tographic protocols, and design of more modular distrithute
tures many standard authorization scenarios, includisg di authorization policies. Our algorithm for answering DKAL
cretionary and mandatory access control, role hierarchies queries has worst-time complexity within the SecPAL time
separation of duties, threshold-constrained trust,baitier complexity bounds.
based delegation, and delegation controlled by conssraint The DKAL query answering algorithm is currently im-
depth, and width, see [5, Section 5]. The semantics of theplemented in Prolog. We work toward more substantial im-
language is defined directly, using a few very condensedplementation and future deployment of DKAL. There are
deduction rules. For the purpose of execution, SecPAL isseveral appetizing directions to expand DKAL. One is to
reduced to Datalog with constraints. Nestean say, develop syntax and semantics for targeting assertions. Cur
facts are used for bounded depth delegation, and the Secrently only targeting of infons is expressible in DKAL. An-
PAL deduction laws give rise to semantics that prevents anyother direction is related to house rules. One may want to
circumventing of the delegation bound. enrich them with additional ensue rules. The problem is to

While its authors see SecPAL as Datalog based [3], we understand which ensue rules can be added without violat-

find it more illuminating to see SecPAL from the point of
view of existential fixed-point logic sketched §2. From
that point of viewcan say (a.k.a.can say.,)andcan

ing the time complexity results. Yet another direction is to
allow the policies to use negation in a stratified way.

say are fact-valued functions that can be nested in Sec-References

PAL. SecPAL policies are reduced to safe Constraint Data-
log programs by converting nestedn say, facts to rela-
tions of arity dependent on the nesting depth, which is finite
in any given policy and can only decrease in deductions.

The RT family languages [21] are also Datalog based.
The languages have roles instead of attributes, and princi-
pals may condition membership in a role they control on
membership in roles controlled by other principals. Both
RT and SecPAL extend Datalog with constraints. In RT
tractability with constraints is obtained by assuming that
constraint domain satisfies quantifier elimination. SecPAL
uses instead a syntactic safety condition that guarartiaés t
constraint variables are instantiated at the time of evalua
tion.

13. Conclusion and future work

We designed an authorization language DKAL which ex-
ceeds the expressivity of previous languages in the litezat
in a number of ways and yet maintains feasible complex-
ity bounds for answering authorization queries. The lan-
guage has several innovative features including these: tar
geted communication and a distinction between knowing
and saying; quotations that can be nested and, more gen-
erally, flexible formation of expressions with unrestritte
use of functions that can be nested and mixed; extended
use of an underlying substrate structure that may be very

[1] Martin Abadi, Michael Burrows, Butler Lampson, and
Gordon Plotkin, “A Calculus for Access Control in
Distributed Systems,” ACM Transactions on Program-
ming Languages and Systems, 15:4, 706—734, 1993.

Martin Abadi and Boon Thau Loo, “Towards a Declar-

ative Language and System for Secure Networking”,
in International Workshop on Networking Meets Data-
bases (NetDB '07), 2007.

2]

[3]
[4]

Private communication, January 2008.

Moritz Y. Becker, Gedric Fournet and Andrew D. Gor-
don, “SecPAL: Design and Semantics of a Decen-
tralized Authorization Language”, Technical Report
MSR-TR-2006-120, Microsoft Research, September
2006.

Moritz Y. Becker, Gedric Fournet and Andrew D. Gor-

don, “SecPAL: Design and Semantics of a Decetral-
ized Authorization Language”, 20th IEEE Computer
Security Foundations Symposium (CSF), 3-15, 2007.

[5]

[6] Moritz Y. Becker and Peter Sewell, “Cassandra: Dis-
tributed Access Control Policies with Tunable Ex-
pressiveness”, in IEEE 5th International Workshop on
Policies for Distributed Systems and Networks, 159-

168, 2004.

[7] Moritz Y. Becker and Peter Sewell, “Cassandra: Flex-
ible Trust Management, Applied to Electronic Health
Records”, in IEEE Computer Security Foundations
Workshop, 139-154, 2004.

[8] Andreas Blass and Yuri Gurevich, “Existential
Fixed-Point Logic”, Springer Lecture Notes in
Computer Science 270 (1987), 20-36. Available
at http://research. m crosoft. conf

~gur evi ch/ Oper a/ 73. pdf.
(9]

Matt Blaze, and Joan Feigenbaum, and Jack Lacy,
“Decentralized Trust Management”, in Proc. 1996

IEEE Symposium on Security and Privacy, 164-173,
1996.

[10] Matt Blaze, Joan Feigenbaum, Angelos D. Keromytis,
“The Role of Trust Management in Distributed Sys-

tems Security”, in Secure Internet Programming, 185—

210, 1999.

[11] S. Cantor, J. Kemp, R. Philpott, and E. Maler,
“Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V2.0", OASIS
Standard saml-core-2.0-0s, March 200Btt p:

[/ docs. oasi s- open. org/ security/

sam /v2.0/ sanm - core- 2. 0- os. pdf.

[12] John DeTreville, “Binder, a Logic-Based Security
Language”, in IEEE Symposium on Security and Pri

vacy, 105-113, 2002.

[13] Blair Dillaway, “A Unified Approach to Trust, Delega-
tion, and Authorization in Large-Scale Grids,” Techni-

cal Paper, Microsoft Corporation, September 2006.

[14] Herbert Enderton, “A Mathematical Introduction to
Logic”, 2nd edition, Academic Press.

[15] Yuri Gurevich and Itay Neeman, “DKAL: Distrib-
uted Knowledge Authorization Language”, MSR-TR-
2007-116 (August 2007) and MSR-TR-2008-09 (Jan-
uary 2008 Revision), Microsoft Research.

[16] Wilfrid Hodges, “Model Theory”, Cambridge Univer-
sity Press, 1993.

[17] Joxan Jaffar and Michael J. Maher, “Constraint logic
programming: A survey,” Journal of Logic Program-
ming 19/20 (1994), 503-580.

[18] Ninghui Li, “Delegation Logic: A Logic-Based Ap-
proach to Distributed Authorization”, Ph.D. thesis,
New York University, September 2000.

[19] Ninghui Li, Benjamin N. Grosof and Joan Feigen-
baum, “Delegation Logic: A Logic-Based Approach

to Distributed Authorization”, ACM Trans. on Infor-
mation and System Security (TISSEC) 6:1 (February
2003), 128-171.

[20] Ninghui Li and John C. Mitchell, “Datalog with Con-
straints: A Foundation for Trust Management Lan-
guages”, PADL 2003, V. Dahl and P. Wadler (Eds.),

LNCS 2562, 58-73, 2003.

[21] Ninghui Li and John C. Mitchell, “RT: A Role-Based
Trust-Management Framework”, in Proceedings of
the Third DARPA Information Survivability Confer-
ence and Exposition (DISCEX Ill), 201-212, April

2003.

[22] Ninghui Li, William H. Winsborough, and John C.
Mitchell, “Beyond Proof-of-Compliance: Safety and
Availability Analysis in Trust Management”, in Pro-
ceedings of 2003 IEEE Symposium on Security and

Privacy, 123-139, May 2003.

[23] B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe,
and |. Stoica, “Declarative Networking: Language,
Execution and Optimization.” In Proceedings of ACM
SIGMOD International Conference on Management

of Data (June 2006).

[24] Yuri Matiyasevich, Hilbert's Tenth Problem,MIT

Press, 1993.

[25] Elliott Mendelson, “Introduction to Mathematical
Logic,” 4th edition, Academic Press.

[26] “Prolog,” Wikipedia. htt p://en. w ki pedi a.
or g/ wi ki / Prol og.

[27] OASIS. Security Assertion Markup Language
(SAML). www. oasi s- open. or g/ .

[28] Oxford English Dictionary, 2nd edition, Oxford Uni-
versity Press, 1989.

[29] Alfred Tarski, “A Lattice-Theoretical Fixpoint Theo-
rem and its Applications”Pacific Journal of Mathe-
matics5:2 (1955), 285-309.

